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The re  ha s  be e n cons ide ra ble  inte re s t la te ly in low- 
e ne rgy mode ls  ba s e d on  the  s upe rs tring [1 ]. This  ha s  
s te mme d from the  hope  tha t the  s upe rs tring, which 
purports  to  give  a  finite  unifie d de s crip tion  o f a ll the  
funda me nta l in te ra ctions , will le a d to  a  pre dic tion  for 
the  e ffe ctive  low-e ne rgy la gra ngia n, fre e  o f pa ra me te rs , 
in which the  ga uge  group , couplings , muttip le t s truc- 
ture , a nd ma s s e s  a re  a ll de te rmine d . S ta nding in the  
wa y o f this  goa l is  the  fa ct tha t the  unde rlying s upe r- 
s tring the o ry,  re le va nt a t the  P la nck s ca le , is  de fine d 
in te n  dime ns ions , a nd s ix o f the s e  dime ns ions  mus t 
be  compa ctifie d  be fore  obta in ing  the  e ffe ctive  four- 
dime ns iona l low-e ne rgy la gra ngia n. The  mos t promis - 
ing compa c tifica tion  s che me  [2] is  on  M 4 × K, whe re  
M 4 is  four-dime ns iona l Minkows ki s p a c e -tim e  a nd 
K is  a  compa c t s ix-dime ns iona l Ricci-fla t K~hle r ma ni- 
fold with  S U(3) h o lo n o m y (C a la b i-Ya u  ma nifo ld). 
This  le a ds  to  a  four-dime ns iona l the o ry with N = 1 
s upe rs ymme try,  a s  is  re quire d to  s olve  the  h ie ra rchy 
p rob le m. 

At our pre s e nt s ta ge  o f unde rs ta nding, K is  no t 
s pe cifie d a lthough, u ltima te ly, one  hope s  it will be  
unique ly give n b y the  choice  o f va cuum s ta te  o f low- 
e s t e ne rgy. The  choice  o f K is  importa n t [2,3] for it 
de te rmine s  the  pa rticle  con te n t a nd couplings  o f the  
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low-e ne rgy the ory; the  numbe r o f ge ne ra tions  is  one  
ha lf the  modulus  o f the  Eule r cha ra cte ris tic  o f K, a nd 
the  Yuka wa  couplings  a re  re la te d to  the  cohomology 
ring o f K. More ove r, K mus t no t be  s imply conne cte d  
if the re  is  to  be  the  pos s ibility o f (flux) bre a king the  
unde rlying ga uge  group to a  via ble  low-e ne rgy group 
[4 ,5]. 

It is  thought tha t on ly finite ly m a n y C a la b i-Ya u  
ma nifo lds  e xis t, a nd on ly thre e  a re  known  with  jus t 
thre e  ge ne ra tions  [6]. Of the s e , one  is  uns uita ble  for 
mode l building, be ing s imply conne c te d , while  the  
o the r two  ha ve  firs t h o m o to p y groups  z 3 a nd z 3 ® z3, 
re s pe ctive ly, a nd thus  do  a dmit flux bre a king. In  this  
le tte r we  a na lys e  in s ome  de ta il a  mode l built on  the  
firs t a nd s imple s t o f the s e  ma nifo lds , R . S ta rting from 
the  he te ro tic  s tring with  a n  E~ ® E 8 s ym m e try in te n 
dime ns ions , compa c tifica tion  on  M × R le a ds  to  a n 
N = 1 s upe rs ymme tric  the o ry with  a n E~ × E 6 ga uge  
s ymme try.  Be fore  imple me nting  flux bre a king, we  
firs t de te rmine  the  Hodge  numbe rs  for the  thre e -ge ne r. 
a tion  ma nifo ld  give n a s  e xa mple  one  in the  a ppe nd ix 
o f re f. [6]. The s e  de te rmine  the  light s upe rmultip le t 
s tructure  in four dime ns ions . We find h t ' 1  = 6 ,  h 2'1 
= 9, corre cting the  Hodge  numbe rs  ca lcula te d in re f. 
[6], corre s ponding to  a  mode l with  thre e  ge ne ra tions  
o f chira l s upe rmultip le ts  tra ns forming as  27 unde r 
E6, toge the r with  6 P a irs  o f (27 + 27) s upe rmuttip le ts , 
ma s s le s s  be fore  flux bre a king. We cons ide r a  flux 
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•  Compute Ricci-flat metric for CICYs and KS CYs.

•  Compute Ricci-flat metric at given point in moduli space.

•  Realised in python/tensorflow library with Mathematica api:

https://github.com/pythoncymetric/cymetric

Key points:
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Monge-Ampere equation

     can be found by solvingJCY
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open source packages developed by the string theory community. For example the toric geometry
routines of SageMath [41] are an integral part of the workflow for many geometers. They rely on the
PALP package [42] and are a necessary component in our toric point generator. The functionality of
these routines have recently been expanded by the CYTools package [43]. Other open source packages
include Stringvacua [44] for studying potentials from string theory and cohomcalc [45] and pyCICY [46]
for studying line bundle cohomologies over CY manifolds.

The outline of this paper is as follows. In Section 2 we will introduce the necessary mathematical back-
ground for the computation of the Ricci-flat metric, including the construction of the required Kähler
forms and a discussion of the point sampling method. Section 3 reviews some basic mathematics related
to Hermitian Yang-Mills (HYM) connections on line bundles and the numerical method for computing
such connections. A brief review of neural networks and an overview of our network architecture follows
in Section 4. Results for the quintic and bi-cubic CY manifolds as well as a Picard number two manifold
from the KS list are presented in Section 5 and we conclude in Section 6. Some useful details on toric
geometry are collection in Appendix A.

2 Mathematical background

In this section we introduce the mathematical background necessary for sampling points and calculating
the CY metric. For our procedure we require three pieces of data for the CY manifold: Its holomorphic
top form ⌦, a Kähler form J , and the a�ne patches plus their transition functions. We collect here
only the important formulas and provide an introduction to the necessary concepts in toric geometry
in Appendix A. We adopt a convention where we add subscripts FS and CY to quantities related to
the ambient Fubini-Study metric (such as the metric itself or its associated Kähler potential) and the
Ricci-flat Calabi-Yau metric, respectively. We do not distinguish between ambient space quantities and
their restriction to not clutter the notation further and it should be clear from the context which one we
are referring to. Our formulae will be written for CY three-folds, but they generalize straight-forwardly
to CY n-folds2. We denote real CY coordinates on a patch by y

m, where m = 1, . . . , 6 and their complex
counterparts by

z
a =

1
p
2
(ya + iy

a+3) , z̄
ā =

1
p
2
(yā � iy

ā+3) , (2.1)

where a, b = 1, 2, 3 and ā, b̄ = 1, 2, 3.

2.1 Kähler forms and volumes

To start, let us recall that the Calabi-Yau theorem [6,7] states that any Kähler n-foldX with c1(TX) = 0
and given Kähler form J

0 admits a unique Ricci-flat metric gCY (simple called CY metric, in the
following) whose associated Kähler form JCY (where JCY,ab̄

= igCY,ab̄
) is in the same cohomology class

as J 0. For three-folds, the Kähler form JCY can be determined from the Monge-Ampère equation

JCY ^ JCY ^ JCY =  ⌦ ^ ⌦̄ with JCY = J
0 + @@̄� (2.2)

where � is a real function on X and  is a complex constant (which may depend on moduli). The
Kähler form J

0 can be any reference Kähler form in the given Kähler class but for our purposes we will

2
The code supports CY manifolds up to complex dimension 6.
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Mathematical background
Yau’s theorem
For a CY manifold   with Kahler form    there exists a unique Kahler form

      with                and an associated Ricci-flat metric                      .  
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Monge-Ampere equation

     can be found by solvingJCY
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open source packages developed by the string theory community. For example the toric geometry
routines of SageMath [41] are an integral part of the workflow for many geometers. They rely on the
PALP package [42] and are a necessary component in our toric point generator. The functionality of
these routines have recently been expanded by the CYTools package [43]. Other open source packages
include Stringvacua [44] for studying potentials from string theory and cohomcalc [45] and pyCICY [46]
for studying line bundle cohomologies over CY manifolds.

The outline of this paper is as follows. In Section 2 we will introduce the necessary mathematical back-
ground for the computation of the Ricci-flat metric, including the construction of the required Kähler
forms and a discussion of the point sampling method. Section 3 reviews some basic mathematics related
to Hermitian Yang-Mills (HYM) connections on line bundles and the numerical method for computing
such connections. A brief review of neural networks and an overview of our network architecture follows
in Section 4. Results for the quintic and bi-cubic CY manifolds as well as a Picard number two manifold
from the KS list are presented in Section 5 and we conclude in Section 6. Some useful details on toric
geometry are collection in Appendix A.

2 Mathematical background

In this section we introduce the mathematical background necessary for sampling points and calculating
the CY metric. For our procedure we require three pieces of data for the CY manifold: Its holomorphic
top form ⌦, a Kähler form J , and the a�ne patches plus their transition functions. We collect here
only the important formulas and provide an introduction to the necessary concepts in toric geometry
in Appendix A. We adopt a convention where we add subscripts FS and CY to quantities related to
the ambient Fubini-Study metric (such as the metric itself or its associated Kähler potential) and the
Ricci-flat Calabi-Yau metric, respectively. We do not distinguish between ambient space quantities and
their restriction to not clutter the notation further and it should be clear from the context which one we
are referring to. Our formulae will be written for CY three-folds, but they generalize straight-forwardly
to CY n-folds2. We denote real CY coordinates on a patch by y

m, where m = 1, . . . , 6 and their complex
counterparts by

z
a =

1
p
2
(ya + iy

a+3) , z̄
ā =

1
p
2
(yā � iy

ā+3) , (2.1)

where a, b = 1, 2, 3 and ā, b̄ = 1, 2, 3.

2.1 Kähler forms and volumes

To start, let us recall that the Calabi-Yau theorem [6,7] states that any Kähler n-foldX with c1(TX) = 0
and given Kähler form J

0 admits a unique Ricci-flat metric gCY (simple called CY metric, in the
following) whose associated Kähler form JCY (where JCY,ab̄

= igCY,ab̄
) is in the same cohomology class

as J 0. For three-folds, the Kähler form JCY can be determined from the Monge-Ampère equation

JCY ^ JCY ^ JCY =  ⌦ ^ ⌦̄ with JCY = J
0 + @@̄� (2.2)

where � is a real function on X and  is a complex constant (which may depend on moduli). The
Kähler form J

0 can be any reference Kähler form in the given Kähler class but for our purposes we will

2
The code supports CY manifolds up to complex dimension 6.
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CY manifolds
We consider CYs          in an ambient space    of two types:  X ⇢ A
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Mathematical background
Yau’s theorem
For a CY manifold   with Kahler form    there exists a unique Kahler form

      with                and an associated Ricci-flat metric                      .  
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gCY,ab̄ = �iJCY,ab̄
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Monge-Ampere equation

     can be found by solvingJCY
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open source packages developed by the string theory community. For example the toric geometry
routines of SageMath [41] are an integral part of the workflow for many geometers. They rely on the
PALP package [42] and are a necessary component in our toric point generator. The functionality of
these routines have recently been expanded by the CYTools package [43]. Other open source packages
include Stringvacua [44] for studying potentials from string theory and cohomcalc [45] and pyCICY [46]
for studying line bundle cohomologies over CY manifolds.

The outline of this paper is as follows. In Section 2 we will introduce the necessary mathematical back-
ground for the computation of the Ricci-flat metric, including the construction of the required Kähler
forms and a discussion of the point sampling method. Section 3 reviews some basic mathematics related
to Hermitian Yang-Mills (HYM) connections on line bundles and the numerical method for computing
such connections. A brief review of neural networks and an overview of our network architecture follows
in Section 4. Results for the quintic and bi-cubic CY manifolds as well as a Picard number two manifold
from the KS list are presented in Section 5 and we conclude in Section 6. Some useful details on toric
geometry are collection in Appendix A.

2 Mathematical background

In this section we introduce the mathematical background necessary for sampling points and calculating
the CY metric. For our procedure we require three pieces of data for the CY manifold: Its holomorphic
top form ⌦, a Kähler form J , and the a�ne patches plus their transition functions. We collect here
only the important formulas and provide an introduction to the necessary concepts in toric geometry
in Appendix A. We adopt a convention where we add subscripts FS and CY to quantities related to
the ambient Fubini-Study metric (such as the metric itself or its associated Kähler potential) and the
Ricci-flat Calabi-Yau metric, respectively. We do not distinguish between ambient space quantities and
their restriction to not clutter the notation further and it should be clear from the context which one we
are referring to. Our formulae will be written for CY three-folds, but they generalize straight-forwardly
to CY n-folds2. We denote real CY coordinates on a patch by y

m, where m = 1, . . . , 6 and their complex
counterparts by

z
a =

1
p
2
(ya + iy

a+3) , z̄
ā =

1
p
2
(yā � iy

ā+3) , (2.1)

where a, b = 1, 2, 3 and ā, b̄ = 1, 2, 3.

2.1 Kähler forms and volumes

To start, let us recall that the Calabi-Yau theorem [6,7] states that any Kähler n-foldX with c1(TX) = 0
and given Kähler form J

0 admits a unique Ricci-flat metric gCY (simple called CY metric, in the
following) whose associated Kähler form JCY (where JCY,ab̄

= igCY,ab̄
) is in the same cohomology class

as J 0. For three-folds, the Kähler form JCY can be determined from the Monge-Ampère equation

JCY ^ JCY ^ JCY =  ⌦ ^ ⌦̄ with JCY = J
0 + @@̄� (2.2)

where � is a real function on X and  is a complex constant (which may depend on moduli). The
Kähler form J

0 can be any reference Kähler form in the given Kähler class but for our purposes we will
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open source packages developed by the string theory community. For example the toric geometry
routines of SageMath [41] are an integral part of the workflow for many geometers. They rely on the
PALP package [42] and are a necessary component in our toric point generator. The functionality of
these routines have recently been expanded by the CYTools package [43]. Other open source packages
include Stringvacua [44] for studying potentials from string theory and cohomcalc [45] and pyCICY [46]
for studying line bundle cohomologies over CY manifolds.

The outline of this paper is as follows. In Section 2 we will introduce the necessary mathematical back-
ground for the computation of the Ricci-flat metric, including the construction of the required Kähler
forms and a discussion of the point sampling method. Section 3 reviews some basic mathematics related
to Hermitian Yang-Mills (HYM) connections on line bundles and the numerical method for computing
such connections. A brief review of neural networks and an overview of our network architecture follows
in Section 4. Results for the quintic and bi-cubic CY manifolds as well as a Picard number two manifold
from the KS list are presented in Section 5 and we conclude in Section 6. Some useful details on toric
geometry are collection in Appendix A.

2 Mathematical background

In this section we introduce the mathematical background necessary for sampling points and calculating
the CY metric. For our procedure we require three pieces of data for the CY manifold: Its holomorphic
top form ⌦, a Kähler form J , and the a�ne patches plus their transition functions. We collect here
only the important formulas and provide an introduction to the necessary concepts in toric geometry
in Appendix A. We adopt a convention where we add subscripts FS and CY to quantities related to
the ambient Fubini-Study metric (such as the metric itself or its associated Kähler potential) and the
Ricci-flat Calabi-Yau metric, respectively. We do not distinguish between ambient space quantities and
their restriction to not clutter the notation further and it should be clear from the context which one we
are referring to. Our formulae will be written for CY three-folds, but they generalize straight-forwardly
to CY n-folds2. We denote real CY coordinates on a patch by y

m, where m = 1, . . . , 6 and their complex
counterparts by
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ā+3) , (2.1)

where a, b = 1, 2, 3 and ā, b̄ = 1, 2, 3.

2.1 Kähler forms and volumes

To start, let us recall that the Calabi-Yau theorem [6,7] states that any Kähler n-foldX with c1(TX) = 0
and given Kähler form J

0 admits a unique Ricci-flat metric gCY (simple called CY metric, in the
following) whose associated Kähler form JCY (where JCY,ab̄

= igCY,ab̄
) is in the same cohomology class

as J 0. For three-folds, the Kähler form JCY can be determined from the Monge-Ampère equation

JCY ^ JCY ^ JCY =  ⌦ ^ ⌦̄ with JCY = J
0 + @@̄� (2.2)

where � is a real function on X and  is a complex constant (which may depend on moduli). The
Kähler form J

0 can be any reference Kähler form in the given Kähler class but for our purposes we will
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open source packages developed by the string theory community. For example the toric geometry
routines of SageMath [41] are an integral part of the workflow for many geometers. They rely on the
PALP package [42] and are a necessary component in our toric point generator. The functionality of
these routines have recently been expanded by the CYTools package [43]. Other open source packages
include Stringvacua [44] for studying potentials from string theory and cohomcalc [45] and pyCICY [46]
for studying line bundle cohomologies over CY manifolds.

The outline of this paper is as follows. In Section 2 we will introduce the necessary mathematical back-
ground for the computation of the Ricci-flat metric, including the construction of the required Kähler
forms and a discussion of the point sampling method. Section 3 reviews some basic mathematics related
to Hermitian Yang-Mills (HYM) connections on line bundles and the numerical method for computing
such connections. A brief review of neural networks and an overview of our network architecture follows
in Section 4. Results for the quintic and bi-cubic CY manifolds as well as a Picard number two manifold
from the KS list are presented in Section 5 and we conclude in Section 6. Some useful details on toric
geometry are collection in Appendix A.

2 Mathematical background

In this section we introduce the mathematical background necessary for sampling points and calculating
the CY metric. For our procedure we require three pieces of data for the CY manifold: Its holomorphic
top form ⌦, a Kähler form J , and the a�ne patches plus their transition functions. We collect here
only the important formulas and provide an introduction to the necessary concepts in toric geometry
in Appendix A. We adopt a convention where we add subscripts FS and CY to quantities related to
the ambient Fubini-Study metric (such as the metric itself or its associated Kähler potential) and the
Ricci-flat Calabi-Yau metric, respectively. We do not distinguish between ambient space quantities and
their restriction to not clutter the notation further and it should be clear from the context which one we
are referring to. Our formulae will be written for CY three-folds, but they generalize straight-forwardly
to CY n-folds2. We denote real CY coordinates on a patch by y

m, where m = 1, . . . , 6 and their complex
counterparts by

z
a =

1
p
2
(ya + iy

a+3) , z̄
ā =

1
p
2
(yā � iy

ā+3) , (2.1)

where a, b = 1, 2, 3 and ā, b̄ = 1, 2, 3.

2.1 Kähler forms and volumes

To start, let us recall that the Calabi-Yau theorem [6,7] states that any Kähler n-foldX with c1(TX) = 0
and given Kähler form J

0 admits a unique Ricci-flat metric gCY (simple called CY metric, in the
following) whose associated Kähler form JCY (where JCY,ab̄

= igCY,ab̄
) is in the same cohomology class

as J 0. For three-folds, the Kähler form JCY can be determined from the Monge-Ampère equation

JCY ^ JCY ^ JCY =  ⌦ ^ ⌦̄ with JCY = J
0 + @@̄� (2.2)

where � is a real function on X and  is a complex constant (which may depend on moduli). The
Kähler form J

0 can be any reference Kähler form in the given Kähler class but for our purposes we will

2
The code supports CY manifolds up to complex dimension 6.

5

CY manifolds
We consider CYs          in an ambient space    of two types:  X ⇢ A
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X = complete intersection ⇢ A = Pn1 ⇥ · · ·⇥ Pnm (CICYs)
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X = hypersurface ⇢ A = toric 4-fold (Kreuzer-Skarke CY)
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J 0 = JFS = t↵J↵
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2.3 Constructing the holomorphic top form

For our purposes we need to construct the holomorphic top form ⌦ explicitly and we follow a method
described, for example, in Ref. [47]. For a KS manifold, defined as a hypersurface in a toric four-fold
A there are always four a�ne ambient space coordinates z

µ, where µ = 1, . . . , 4, on a given patch,
explicitly given in Eq. (A.5). Then we can write the holomorphic (3, 0) form as

⌦ =
dz1 ^ dz2 ^ dz3

@p/@z4
, (2.11)

where the coordinate z4 in the denominator should be replaced by a solution z4 = z4(za), where
a = 1, 2, 3, of the defining equation p(zµ) = 0. More details on the underlying toric geometry can be
found in Appendix A.

For the case of CICYs, defined in an ambient space A = Pn1 ⇥ · · · ⇥ Pnh with total dimension d =P
h

↵=1 n↵, we have a�ne coordinates zµ, where µ = 1, . . . , d on each patch. From these we can choose
three coordinates, za, where a = 1, 2, 3, to parameterize the CY patch while the remaining K = d � 3
coordinates z

q can be written as functions z
q = z

q(za) by using the K defining polynomials pr of the
CICY. The holomorphic (3, 0)-form can then be written in terms of the determinant of the K ⇥ K

matrix @pr/@z
q, and is explicitly given by

⌦ =
dz1 ^ dz2 ^ dz3

det(@pr/@zq)
, (2.12)

where the coordinates zq in the denominator have to be replaced by the solutions zq = z
q(za).

Given ⌦, it is useful to introduce the associated volume form

dVol⌦ = ⌦ ^ ⌦̄ ) dVolCY =


3!
dVol⌦ (2.13)

which, by virtue of the Monge-Ampere equation (2.2) and Eq. (2.4), is proportional to the CY volume
form. This means, while the Ricci-flat CY metric is not known in analytic form, its associated volume
form can be constructed explicitly (up to a constant) from the expression for ⌦.

2.4 Transition functions

The a�ne coordinates on each patch of the (toric) ambient space patch can be written as functions of
the homogeneous coordinates xi (see Appendix A.2). More explicitly, for two ambient space patches U
and V with a�ne coordinates uµ and v

⌫ ,3 respectively, we can write u
µ = u

µ(x) and v
⌫ = v

⌫(x), where
the functional dependence on x

i is determined by Eq. (A.5). The transition function v
⌫ = v

⌫(u) can
then be determined by matching the functional dependence on the homogeneous coordinates x

i. The
transition matrix is then simply the Jacobian of this coordinate change,

(TUV)
⌫

µ =
@v

⌫

@uµ
. (2.14)

3
We caution the reader not to confuse these a�ne coordinates uµ

and v⌫ with e.g. the toric vertices discussed in other

sections of this paper.
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take this to be the obvious Kähler form induced from the toric ambient space, that is the (generalized)
Fubini-Study Kähler form denoted by J

0 = JFS. It is usually written as a linear combination

JFS = t
↵
J↵ (2.3)

relative to a basis J↵ of (1, 1) forms (where ↵ = 1, . . . , h1,1(X)), also obtained by restriction from the
ambient space. Here t↵ are the Kähler parameters. Associated to these Kähler forms are volume forms

dVolCY =
1

3!
J
3
CY , dVolFS =

1

3!
J
3
FS (2.4)

and a typical problem is to compute integrals of the type
Z

X

dVolCY f =

Z

X

d
6
y
p
gCY f ,

Z

X

dVolFS f =

Z

X

d
6
y
p
gFS f , (2.5)

for some function f on X. We will see later how numerical results for JCY (and, indeed, JFS) can be
used the evaluate such integrals numerically. For the constant function f = 1 this computes the CY
volume

Volt(X) =

Z

X

dVolCY =

Z

X

dVolFS =
1

3!
d↵��t

↵
t
�
t
� (2.6)

which coincides for the CY and FS measure (provided, as we assume, JCY and JFS are in the same
cohomology class) and which can be computed from the topological formula on the RHS of Eq. (2.6).
Here

d↵�� =

Z

X

J↵ ^ J� ^ J� . (2.7)

are the intersection numbers which are known or can be computed for CICY and KS manifolds (our
package does this automatically in the background).

2.2 Line bundle slopes

Another interesting set of quantities which can be used for the same purpose (and we will, in fact, use it
to enforce the correct Kähler class during training) is the slope of line bundles. The line bundle L ! X

with first Chern class c1(L) = [k↵J↵] is denoted by OX(k) and its slope µt(OX(k)) is defined by

µt(OX(k)) =

Z

X

J
2
CY ^ c1(OX(k)) =

Z

X

J
2
FS ^ c1(OX(k)) = d↵�� t

↵
t
�
k
�
. (2.8)

Note, since the intersection numbers are known, this can be computed from the Kähler parameters t↵

and the line bundle integers k↵. On the other hand, introducing the curvature FFS and corresponding
sources ⇢FS and ⇢CY on OX(k) by

FFS = 2⇡ik↵J↵ , ⇢FS =
1

2
g
ab̄

FSFFS,ab̄ , ⇢CY =
1

2
g
ab̄

CYFFS,ab̄ (2.9)

the slope can also be computed from

µt(OX(k)) =
2

⇡

Z

X

dVolCY ⇢CY =
2

⇡

Z

X

dVolFS ⇢FS . (2.10)

The numerical version of this equation will be used to compute line bundle slopes during training and
compute the slope loss, in order to enforce the correct Kähler class.
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2.3 Constructing the holomorphic top form

For our purposes we need to construct the holomorphic top form ⌦ explicitly and we follow a method
described, for example, in Ref. [47]. For a KS manifold, defined as a hypersurface in a toric four-fold
A there are always four a�ne ambient space coordinates z

µ, where µ = 1, . . . , 4, on a given patch,
explicitly given in Eq. (A.5). Then we can write the holomorphic (3, 0) form as

⌦ =
dz1 ^ dz2 ^ dz3

@p/@z4
, (2.11)

where the coordinate z4 in the denominator should be replaced by a solution z4 = z4(za), where
a = 1, 2, 3, of the defining equation p(zµ) = 0. More details on the underlying toric geometry can be
found in Appendix A.

For the case of CICYs, defined in an ambient space A = Pn1 ⇥ · · · ⇥ Pnh with total dimension d =P
h

↵=1 n↵, we have a�ne coordinates zµ, where µ = 1, . . . , d on each patch. From these we can choose
three coordinates, za, where a = 1, 2, 3, to parameterize the CY patch while the remaining K = d � 3
coordinates z

q can be written as functions z
q = z

q(za) by using the K defining polynomials pr of the
CICY. The holomorphic (3, 0)-form can then be written in terms of the determinant of the K ⇥ K

matrix @pr/@z
q, and is explicitly given by

⌦ =
dz1 ^ dz2 ^ dz3

det(@pr/@zq)
, (2.12)

where the coordinates zq in the denominator have to be replaced by the solutions zq = z
q(za).

Given ⌦, it is useful to introduce the associated volume form

dVol⌦ = ⌦ ^ ⌦̄ ) dVolCY =


3!
dVol⌦ (2.13)

which, by virtue of the Monge-Ampere equation (2.2) and Eq. (2.4), is proportional to the CY volume
form. This means, while the Ricci-flat CY metric is not known in analytic form, its associated volume
form can be constructed explicitly (up to a constant) from the expression for ⌦.

2.4 Transition functions

The a�ne coordinates on each patch of the (toric) ambient space patch can be written as functions of
the homogeneous coordinates xi (see Appendix A.2). More explicitly, for two ambient space patches U
and V with a�ne coordinates uµ and v

⌫ ,3 respectively, we can write u
µ = u

µ(x) and v
⌫ = v

⌫(x), where
the functional dependence on x

i is determined by Eq. (A.5). The transition function v
⌫ = v

⌫(u) can
then be determined by matching the functional dependence on the homogeneous coordinates x

i. The
transition matrix is then simply the Jacobian of this coordinate change,

(TUV)
⌫

µ =
@v

⌫

@uµ
. (2.14)

3
We caution the reader not to confuse these a�ne coordinates uµ

and v⌫ with e.g. the toric vertices discussed in other

sections of this paper.
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2.3 Constructing the holomorphic top form

For our purposes we need to construct the holomorphic top form ⌦ explicitly and we follow a method
described, for example, in Ref. [47]. For a KS manifold, defined as a hypersurface in a toric four-fold
A there are always four a�ne ambient space coordinates z

µ, where µ = 1, . . . , 4, on a given patch,
explicitly given in Eq. (A.5). Then we can write the holomorphic (3, 0) form as

⌦ =
dz1 ^ dz2 ^ dz3

@p/@z4
, (2.11)

where the coordinate z4 in the denominator should be replaced by a solution z4 = z4(za), where
a = 1, 2, 3, of the defining equation p(zµ) = 0. More details on the underlying toric geometry can be
found in Appendix A.

For the case of CICYs, defined in an ambient space A = Pn1 ⇥ · · · ⇥ Pnh with total dimension d =P
h

↵=1 n↵, we have a�ne coordinates zµ, where µ = 1, . . . , d on each patch. From these we can choose
three coordinates, za, where a = 1, 2, 3, to parameterize the CY patch while the remaining K = d � 3
coordinates z

q can be written as functions z
q = z

q(za) by using the K defining polynomials pr of the
CICY. The holomorphic (3, 0)-form can then be written in terms of the determinant of the K ⇥ K

matrix @pr/@z
q, and is explicitly given by

⌦ =
dz1 ^ dz2 ^ dz3

det(@pr/@zq)
, (2.12)

where the coordinates zq in the denominator have to be replaced by the solutions zq = z
q(za).

Given ⌦, it is useful to introduce the associated volume form

dVol⌦ = ⌦ ^ ⌦̄ ) dVolCY =


3!
dVol⌦ (2.13)

which, by virtue of the Monge-Ampere equation (2.2) and Eq. (2.4), is proportional to the CY volume
form. This means, while the Ricci-flat CY metric is not known in analytic form, its associated volume
form can be constructed explicitly (up to a constant) from the expression for ⌦.

2.4 Transition functions

The a�ne coordinates on each patch of the (toric) ambient space patch can be written as functions of
the homogeneous coordinates xi (see Appendix A.2). More explicitly, for two ambient space patches U
and V with a�ne coordinates uµ and v

⌫ ,3 respectively, we can write u
µ = u

µ(x) and v
⌫ = v

⌫(x), where
the functional dependence on x

i is determined by Eq. (A.5). The transition function v
⌫ = v

⌫(u) can
then be determined by matching the functional dependence on the homogeneous coordinates x

i. The
transition matrix is then simply the Jacobian of this coordinate change,

(TUV)
⌫

µ =
@v

⌫

@uµ
. (2.14)

3
We caution the reader not to confuse these a�ne coordinates uµ

and v⌫ with e.g. the toric vertices discussed in other

sections of this paper.
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take this to be the obvious Kähler form induced from the toric ambient space, that is the (generalized)
Fubini-Study Kähler form denoted by J

0 = JFS. It is usually written as a linear combination

JFS = t
↵
J↵ (2.3)

relative to a basis J↵ of (1, 1) forms (where ↵ = 1, . . . , h1,1(X)), also obtained by restriction from the
ambient space. Here t↵ are the Kähler parameters. Associated to these Kähler forms are volume forms
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and a typical problem is to compute integrals of the type
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for some function f on X. We will see later how numerical results for JCY (and, indeed, JFS) can be
used the evaluate such integrals numerically. For the constant function f = 1 this computes the CY
volume
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which coincides for the CY and FS measure (provided, as we assume, JCY and JFS are in the same
cohomology class) and which can be computed from the topological formula on the RHS of Eq. (2.6).
Here

d↵�� =

Z

X

J↵ ^ J� ^ J� . (2.7)

are the intersection numbers which are known or can be computed for CICY and KS manifolds (our
package does this automatically in the background).

2.2 Line bundle slopes

Another interesting set of quantities which can be used for the same purpose (and we will, in fact, use it
to enforce the correct Kähler class during training) is the slope of line bundles. The line bundle L ! X

with first Chern class c1(L) = [k↵J↵] is denoted by OX(k) and its slope µt(OX(k)) is defined by
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Note, since the intersection numbers are known, this can be computed from the Kähler parameters t↵

and the line bundle integers k↵. On the other hand, introducing the curvature FFS and corresponding
sources ⇢FS and ⇢CY on OX(k) by

FFS = 2⇡ik↵J↵ , ⇢FS =
1

2
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the slope can also be computed from

µt(OX(k)) =
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dVolCY ⇢CY =
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⇡
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dVolFS ⇢FS . (2.10)

The numerical version of this equation will be used to compute line bundle slopes during training and
compute the slope loss, in order to enforce the correct Kähler class.

6

take this to be the obvious Kähler form induced from the toric ambient space, that is the (generalized)
Fubini-Study Kähler form denoted by J

0 = JFS. It is usually written as a linear combination

JFS = t
↵
J↵ (2.3)

relative to a basis J↵ of (1, 1) forms (where ↵ = 1, . . . , h1,1(X)), also obtained by restriction from the
ambient space. Here t↵ are the Kähler parameters. Associated to these Kähler forms are volume forms

dVolCY =
1

3!
J
3
CY , dVolFS =

1

3!
J
3
FS (2.4)

and a typical problem is to compute integrals of the type
Z

X

dVolCY f =

Z

X

d
6
y
p
gCY f ,

Z

X

dVolFS f =

Z

X

d
6
y
p
gFS f , (2.5)

for some function f on X. We will see later how numerical results for JCY (and, indeed, JFS) can be
used the evaluate such integrals numerically. For the constant function f = 1 this computes the CY
volume

Volt(X) =

Z

X

dVolCY =

Z

X

dVolFS =
1

3!
d↵��t

↵
t
�
t
� (2.6)

which coincides for the CY and FS measure (provided, as we assume, JCY and JFS are in the same
cohomology class) and which can be computed from the topological formula on the RHS of Eq. (2.6).
Here

d↵�� =

Z

X

J↵ ^ J� ^ J� . (2.7)

are the intersection numbers which are known or can be computed for CICY and KS manifolds (our
package does this automatically in the background).

2.2 Line bundle slopes

Another interesting set of quantities which can be used for the same purpose (and we will, in fact, use it
to enforce the correct Kähler class during training) is the slope of line bundles. The line bundle L ! X

with first Chern class c1(L) = [k↵J↵] is denoted by OX(k) and its slope µt(OX(k)) is defined by

µt(OX(k)) =

Z

X

J
2
CY ^ c1(OX(k)) =

Z

X

J
2
FS ^ c1(OX(k)) = d↵�� t

↵
t
�
k
�
. (2.8)

Note, since the intersection numbers are known, this can be computed from the Kähler parameters t↵

and the line bundle integers k↵. On the other hand, introducing the curvature FFS and corresponding
sources ⇢FS and ⇢CY on OX(k) by

FFS = 2⇡ik↵J↵ , ⇢FS =
1

2
g
ab̄

FSFFS,ab̄ , ⇢CY =
1

2
g
ab̄

CYFFS,ab̄ (2.9)

the slope can also be computed from

µt(OX(k)) =
2

⇡

Z

X

dVolCY ⇢CY =
2

⇡

Z

X

dVolFS ⇢FS . (2.10)

The numerical version of this equation will be used to compute line bundle slopes during training and
compute the slope loss, in order to enforce the correct Kähler class.

6

2.3 Constructing the holomorphic top form

For our purposes we need to construct the holomorphic top form ⌦ explicitly and we follow a method
described, for example, in Ref. [47]. For a KS manifold, defined as a hypersurface in a toric four-fold
A there are always four a�ne ambient space coordinates z

µ, where µ = 1, . . . , 4, on a given patch,
explicitly given in Eq. (A.5). Then we can write the holomorphic (3, 0) form as

⌦ =
dz1 ^ dz2 ^ dz3

@p/@z4
, (2.11)

where the coordinate z4 in the denominator should be replaced by a solution z4 = z4(za), where
a = 1, 2, 3, of the defining equation p(zµ) = 0. More details on the underlying toric geometry can be
found in Appendix A.

For the case of CICYs, defined in an ambient space A = Pn1 ⇥ · · · ⇥ Pnh with total dimension d =P
h

↵=1 n↵, we have a�ne coordinates zµ, where µ = 1, . . . , d on each patch. From these we can choose
three coordinates, za, where a = 1, 2, 3, to parameterize the CY patch while the remaining K = d � 3
coordinates z

q can be written as functions z
q = z

q(za) by using the K defining polynomials pr of the
CICY. The holomorphic (3, 0)-form can then be written in terms of the determinant of the K ⇥ K

matrix @pr/@z
q, and is explicitly given by

⌦ =
dz1 ^ dz2 ^ dz3

det(@pr/@zq)
, (2.12)

where the coordinates zq in the denominator have to be replaced by the solutions zq = z
q(za).

Given ⌦, it is useful to introduce the associated volume form

dVol⌦ = ⌦ ^ ⌦̄ ) dVolCY =


3!
dVol⌦ (2.13)

which, by virtue of the Monge-Ampere equation (2.2) and Eq. (2.4), is proportional to the CY volume
form. This means, while the Ricci-flat CY metric is not known in analytic form, its associated volume
form can be constructed explicitly (up to a constant) from the expression for ⌦.

2.4 Transition functions

The a�ne coordinates on each patch of the (toric) ambient space patch can be written as functions of
the homogeneous coordinates xi (see Appendix A.2). More explicitly, for two ambient space patches U
and V with a�ne coordinates uµ and v

⌫ ,3 respectively, we can write u
µ = u

µ(x) and v
⌫ = v

⌫(x), where
the functional dependence on x

i is determined by Eq. (A.5). The transition function v
⌫ = v

⌫(u) can
then be determined by matching the functional dependence on the homogeneous coordinates x

i. The
transition matrix is then simply the Jacobian of this coordinate change,

(TUV)
⌫

µ =
@v

⌫

@uµ
. (2.14)

3
We caution the reader not to confuse these a�ne coordinates uµ

and v⌫ with e.g. the toric vertices discussed in other

sections of this paper.

7

take this to be the obvious Kähler form induced from the toric ambient space, that is the (generalized)
Fubini-Study Kähler form denoted by J

0 = JFS. It is usually written as a linear combination

JFS = t
↵
J↵ (2.3)

relative to a basis J↵ of (1, 1) forms (where ↵ = 1, . . . , h1,1(X)), also obtained by restriction from the
ambient space. Here t↵ are the Kähler parameters. Associated to these Kähler forms are volume forms

dVolCY =
1

3!
J
3
CY , dVolFS =

1

3!
J
3
FS (2.4)

and a typical problem is to compute integrals of the type
Z

X

dVolCY f =

Z

X

d
6
y
p
gCY f ,

Z

X

dVolFS f =

Z

X

d
6
y
p
gFS f , (2.5)

for some function f on X. We will see later how numerical results for JCY (and, indeed, JFS) can be
used the evaluate such integrals numerically. For the constant function f = 1 this computes the CY
volume

Volt(X) =

Z

X

dVolCY =

Z

X

dVolFS =
1

3!
d↵��t

↵
t
�
t
� (2.6)

which coincides for the CY and FS measure (provided, as we assume, JCY and JFS are in the same
cohomology class) and which can be computed from the topological formula on the RHS of Eq. (2.6).
Here

d↵�� =

Z

X

J↵ ^ J� ^ J� . (2.7)

are the intersection numbers which are known or can be computed for CICY and KS manifolds (our
package does this automatically in the background).

2.2 Line bundle slopes

Another interesting set of quantities which can be used for the same purpose (and we will, in fact, use it
to enforce the correct Kähler class during training) is the slope of line bundles. The line bundle L ! X

with first Chern class c1(L) = [k↵J↵] is denoted by OX(k) and its slope µt(OX(k)) is defined by

µt(OX(k)) =

Z

X

J
2
CY ^ c1(OX(k)) =

Z

X

J
2
FS ^ c1(OX(k)) = d↵�� t

↵
t
�
k
�
. (2.8)

Note, since the intersection numbers are known, this can be computed from the Kähler parameters t↵

and the line bundle integers k↵. On the other hand, introducing the curvature FFS and corresponding
sources ⇢FS and ⇢CY on OX(k) by

FFS = 2⇡ik↵J↵ , ⇢FS =
1

2
g
ab̄

FSFFS,ab̄ , ⇢CY =
1

2
g
ab̄

CYFFS,ab̄ (2.9)

the slope can also be computed from

µt(OX(k)) =
2

⇡

Z

X

dVolCY ⇢CY =
2

⇡

Z

X

dVolFS ⇢FS . (2.10)

The numerical version of this equation will be used to compute line bundle slopes during training and
compute the slope loss, in order to enforce the correct Kähler class.

6

typical problem: integrate function            over CY f : X ! C

<latexit sha1_base64="cSSzOkBL/hz0/ow3ZtM6BGAkAaw=">AAACAnicbVBNS8NAEN34WetX1JN4WSyCp5JIRREPhV48VrAf0JSy2W7apZts2J0oJRQv/hUvHhTx6q/w5r9x0+agrQ8GHu/NMDPPjwXX4Djf1tLyyuraemGjuLm1vbNr7+03tUwUZQ0qhVRtn2gmeMQawEGwdqwYCX3BWv6olvmte6Y0l9EdjGPWDckg4gGnBIzUsw+Dq7an+GAIRCn5gL2QwND309qkZ5ecsjMFXiRuTkooR71nf3l9SZOQRUAF0brjOjF0U6KAU8EmRS/RLCZ0RAasY2hEQqa76fSFCT4xSh8HUpmKAE/V3xMpCbUeh77pzC7U814m/ud1EgguuymP4gRYRGeLgkRgkDjLA/e5YhTE2BBCFTe3YjokilAwqRVNCO78y4ukeVZ2K+Xz20qpep3HUUBH6BidIhddoCq6QXXUQBQ9omf0it6sJ+vFerc+Zq1LVj5zgP7A+vwBX+6XaQ==</latexit>

CY volume: 

take this to be the obvious Kähler form induced from the toric ambient space, that is the (generalized)
Fubini-Study Kähler form denoted by J

0 = JFS. It is usually written as a linear combination

JFS = t
↵
J↵ (2.3)

relative to a basis J↵ of (1, 1) forms (where ↵ = 1, . . . , h1,1(X)), also obtained by restriction from the
ambient space. Here t↵ are the Kähler parameters. Associated to these Kähler forms are volume forms

dVolCY =
1

3!
J
3
CY , dVolFS =

1

3!
J
3
FS (2.4)

and a typical problem is to compute integrals of the type
Z

X

dVolCY f =

Z

X

d
6
y
p
gCY f ,

Z

X

dVolFS f =

Z

X

d
6
y
p
gFS f , (2.5)

for some function f on X. We will see later how numerical results for JCY (and, indeed, JFS) can be
used the evaluate such integrals numerically. For the constant function f = 1 this computes the CY
volume

Volt(X) =

Z

X

dVolCY =

Z

X

dVolFS =
1

3!
d↵��t

↵
t
�
t
� (2.6)

which coincides for the CY and FS measure (provided, as we assume, JCY and JFS are in the same
cohomology class) and which can be computed from the topological formula on the RHS of Eq. (2.6).
Here

d↵�� =

Z

X

J↵ ^ J� ^ J� . (2.7)

are the intersection numbers which are known or can be computed for CICY and KS manifolds (our
package does this automatically in the background).

2.2 Line bundle slopes

Another interesting set of quantities which can be used for the same purpose (and we will, in fact, use it
to enforce the correct Kähler class during training) is the slope of line bundles. The line bundle L ! X

with first Chern class c1(L) = [k↵J↵] is denoted by OX(k) and its slope µt(OX(k)) is defined by

µt(OX(k)) =

Z

X

J
2
CY ^ c1(OX(k)) =

Z

X

J
2
FS ^ c1(OX(k)) = d↵�� t

↵
t
�
k
�
. (2.8)

Note, since the intersection numbers are known, this can be computed from the Kähler parameters t↵

and the line bundle integers k↵. On the other hand, introducing the curvature FFS and corresponding
sources ⇢FS and ⇢CY on OX(k) by

FFS = 2⇡ik↵J↵ , ⇢FS =
1

2
g
ab̄

FSFFS,ab̄ , ⇢CY =
1

2
g
ab̄

CYFFS,ab̄ (2.9)

the slope can also be computed from

µt(OX(k)) =
2

⇡

Z

X

dVolCY ⇢CY =
2

⇡

Z

X

dVolFS ⇢FS . (2.10)

The numerical version of this equation will be used to compute line bundle slopes during training and
compute the slope loss, in order to enforce the correct Kähler class.
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Volume forms and integration

2.3 Constructing the holomorphic top form

For our purposes we need to construct the holomorphic top form ⌦ explicitly and we follow a method
described, for example, in Ref. [47]. For a KS manifold, defined as a hypersurface in a toric four-fold
A there are always four a�ne ambient space coordinates z

µ, where µ = 1, . . . , 4, on a given patch,
explicitly given in Eq. (A.5). Then we can write the holomorphic (3, 0) form as

⌦ =
dz1 ^ dz2 ^ dz3

@p/@z4
, (2.11)

where the coordinate z4 in the denominator should be replaced by a solution z4 = z4(za), where
a = 1, 2, 3, of the defining equation p(zµ) = 0. More details on the underlying toric geometry can be
found in Appendix A.

For the case of CICYs, defined in an ambient space A = Pn1 ⇥ · · · ⇥ Pnh with total dimension d =P
h

↵=1 n↵, we have a�ne coordinates zµ, where µ = 1, . . . , d on each patch. From these we can choose
three coordinates, za, where a = 1, 2, 3, to parameterize the CY patch while the remaining K = d � 3
coordinates z

q can be written as functions z
q = z

q(za) by using the K defining polynomials pr of the
CICY. The holomorphic (3, 0)-form can then be written in terms of the determinant of the K ⇥ K

matrix @pr/@z
q, and is explicitly given by

⌦ =
dz1 ^ dz2 ^ dz3

det(@pr/@zq)
, (2.12)

where the coordinates zq in the denominator have to be replaced by the solutions zq = z
q(za).

Given ⌦, it is useful to introduce the associated volume form

dVol⌦ = ⌦ ^ ⌦̄ ) dVolCY =


3!
dVol⌦ (2.13)

which, by virtue of the Monge-Ampere equation (2.2) and Eq. (2.4), is proportional to the CY volume
form. This means, while the Ricci-flat CY metric is not known in analytic form, its associated volume
form can be constructed explicitly (up to a constant) from the expression for ⌦.

2.4 Transition functions

The a�ne coordinates on each patch of the (toric) ambient space patch can be written as functions of
the homogeneous coordinates xi (see Appendix A.2). More explicitly, for two ambient space patches U
and V with a�ne coordinates uµ and v

⌫ ,3 respectively, we can write u
µ = u

µ(x) and v
⌫ = v

⌫(x), where
the functional dependence on x

i is determined by Eq. (A.5). The transition function v
⌫ = v

⌫(u) can
then be determined by matching the functional dependence on the homogeneous coordinates x

i. The
transition matrix is then simply the Jacobian of this coordinate change,

(TUV)
⌫

µ =
@v

⌫

@uµ
. (2.14)

3
We caution the reader not to confuse these a�ne coordinates uµ

and v⌫ with e.g. the toric vertices discussed in other

sections of this paper.
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take this to be the obvious Kähler form induced from the toric ambient space, that is the (generalized)
Fubini-Study Kähler form denoted by J

0 = JFS. It is usually written as a linear combination

JFS = t
↵
J↵ (2.3)

relative to a basis J↵ of (1, 1) forms (where ↵ = 1, . . . , h1,1(X)), also obtained by restriction from the
ambient space. Here t↵ are the Kähler parameters. Associated to these Kähler forms are volume forms

dVolCY =
1

3!
J
3
CY , dVolFS =

1

3!
J
3
FS (2.4)

and a typical problem is to compute integrals of the type
Z

X

dVolCY f =

Z

X

d
6
y
p
gCY f ,

Z

X

dVolFS f =

Z

X

d
6
y
p
gFS f , (2.5)

for some function f on X. We will see later how numerical results for JCY (and, indeed, JFS) can be
used the evaluate such integrals numerically. For the constant function f = 1 this computes the CY
volume

Volt(X) =

Z

X

dVolCY =

Z

X

dVolFS =
1

3!
d↵��t

↵
t
�
t
� (2.6)

which coincides for the CY and FS measure (provided, as we assume, JCY and JFS are in the same
cohomology class) and which can be computed from the topological formula on the RHS of Eq. (2.6).
Here

d↵�� =

Z

X

J↵ ^ J� ^ J� . (2.7)

are the intersection numbers which are known or can be computed for CICY and KS manifolds (our
package does this automatically in the background).

2.2 Line bundle slopes

Another interesting set of quantities which can be used for the same purpose (and we will, in fact, use it
to enforce the correct Kähler class during training) is the slope of line bundles. The line bundle L ! X

with first Chern class c1(L) = [k↵J↵] is denoted by OX(k) and its slope µt(OX(k)) is defined by

µt(OX(k)) =

Z

X

J
2
CY ^ c1(OX(k)) =

Z

X

J
2
FS ^ c1(OX(k)) = d↵�� t

↵
t
�
k
�
. (2.8)

Note, since the intersection numbers are known, this can be computed from the Kähler parameters t↵

and the line bundle integers k↵. On the other hand, introducing the curvature FFS and corresponding
sources ⇢FS and ⇢CY on OX(k) by

FFS = 2⇡ik↵J↵ , ⇢FS =
1

2
g
ab̄

FSFFS,ab̄ , ⇢CY =
1

2
g
ab̄

CYFFS,ab̄ (2.9)

the slope can also be computed from

µt(OX(k)) =
2

⇡

Z

X

dVolCY ⇢CY =
2

⇡

Z

X

dVolFS ⇢FS . (2.10)

The numerical version of this equation will be used to compute line bundle slopes during training and
compute the slope loss, in order to enforce the correct Kähler class.

6

take this to be the obvious Kähler form induced from the toric ambient space, that is the (generalized)
Fubini-Study Kähler form denoted by J

0 = JFS. It is usually written as a linear combination

JFS = t
↵
J↵ (2.3)

relative to a basis J↵ of (1, 1) forms (where ↵ = 1, . . . , h1,1(X)), also obtained by restriction from the
ambient space. Here t↵ are the Kähler parameters. Associated to these Kähler forms are volume forms

dVolCY =
1

3!
J
3
CY , dVolFS =

1

3!
J
3
FS (2.4)

and a typical problem is to compute integrals of the type
Z

X

dVolCY f =

Z

X

d
6
y
p
gCY f ,

Z

X

dVolFS f =

Z

X

d
6
y
p
gFS f , (2.5)

for some function f on X. We will see later how numerical results for JCY (and, indeed, JFS) can be
used the evaluate such integrals numerically. For the constant function f = 1 this computes the CY
volume

Volt(X) =

Z

X

dVolCY =

Z

X

dVolFS =
1

3!
d↵��t

↵
t
�
t
� (2.6)

which coincides for the CY and FS measure (provided, as we assume, JCY and JFS are in the same
cohomology class) and which can be computed from the topological formula on the RHS of Eq. (2.6).
Here

d↵�� =

Z

X

J↵ ^ J� ^ J� . (2.7)

are the intersection numbers which are known or can be computed for CICY and KS manifolds (our
package does this automatically in the background).

2.2 Line bundle slopes

Another interesting set of quantities which can be used for the same purpose (and we will, in fact, use it
to enforce the correct Kähler class during training) is the slope of line bundles. The line bundle L ! X

with first Chern class c1(L) = [k↵J↵] is denoted by OX(k) and its slope µt(OX(k)) is defined by

µt(OX(k)) =

Z

X

J
2
CY ^ c1(OX(k)) =

Z

X

J
2
FS ^ c1(OX(k)) = d↵�� t

↵
t
�
k
�
. (2.8)

Note, since the intersection numbers are known, this can be computed from the Kähler parameters t↵

and the line bundle integers k↵. On the other hand, introducing the curvature FFS and corresponding
sources ⇢FS and ⇢CY on OX(k) by

FFS = 2⇡ik↵J↵ , ⇢FS =
1

2
g
ab̄

FSFFS,ab̄ , ⇢CY =
1

2
g
ab̄

CYFFS,ab̄ (2.9)

the slope can also be computed from

µt(OX(k)) =
2

⇡

Z

X

dVolCY ⇢CY =
2

⇡

Z

X

dVolFS ⇢FS . (2.10)

The numerical version of this equation will be used to compute line bundle slopes during training and
compute the slope loss, in order to enforce the correct Kähler class.

6

2.3 Constructing the holomorphic top form

For our purposes we need to construct the holomorphic top form ⌦ explicitly and we follow a method
described, for example, in Ref. [47]. For a KS manifold, defined as a hypersurface in a toric four-fold
A there are always four a�ne ambient space coordinates z

µ, where µ = 1, . . . , 4, on a given patch,
explicitly given in Eq. (A.5). Then we can write the holomorphic (3, 0) form as

⌦ =
dz1 ^ dz2 ^ dz3

@p/@z4
, (2.11)

where the coordinate z4 in the denominator should be replaced by a solution z4 = z4(za), where
a = 1, 2, 3, of the defining equation p(zµ) = 0. More details on the underlying toric geometry can be
found in Appendix A.

For the case of CICYs, defined in an ambient space A = Pn1 ⇥ · · · ⇥ Pnh with total dimension d =P
h

↵=1 n↵, we have a�ne coordinates zµ, where µ = 1, . . . , d on each patch. From these we can choose
three coordinates, za, where a = 1, 2, 3, to parameterize the CY patch while the remaining K = d � 3
coordinates z

q can be written as functions z
q = z

q(za) by using the K defining polynomials pr of the
CICY. The holomorphic (3, 0)-form can then be written in terms of the determinant of the K ⇥ K

matrix @pr/@z
q, and is explicitly given by

⌦ =
dz1 ^ dz2 ^ dz3

det(@pr/@zq)
, (2.12)

where the coordinates zq in the denominator have to be replaced by the solutions zq = z
q(za).

Given ⌦, it is useful to introduce the associated volume form

dVol⌦ = ⌦ ^ ⌦̄ ) dVolCY =


3!
dVol⌦ (2.13)

which, by virtue of the Monge-Ampere equation (2.2) and Eq. (2.4), is proportional to the CY volume
form. This means, while the Ricci-flat CY metric is not known in analytic form, its associated volume
form can be constructed explicitly (up to a constant) from the expression for ⌦.

2.4 Transition functions

The a�ne coordinates on each patch of the (toric) ambient space patch can be written as functions of
the homogeneous coordinates xi (see Appendix A.2). More explicitly, for two ambient space patches U
and V with a�ne coordinates uµ and v

⌫ ,3 respectively, we can write u
µ = u

µ(x) and v
⌫ = v

⌫(x), where
the functional dependence on x

i is determined by Eq. (A.5). The transition function v
⌫ = v

⌫(u) can
then be determined by matching the functional dependence on the homogeneous coordinates x

i. The
transition matrix is then simply the Jacobian of this coordinate change,

(TUV)
⌫

µ =
@v

⌫

@uµ
. (2.14)

3
We caution the reader not to confuse these a�ne coordinates uµ

and v⌫ with e.g. the toric vertices discussed in other

sections of this paper.

7

take this to be the obvious Kähler form induced from the toric ambient space, that is the (generalized)
Fubini-Study Kähler form denoted by J

0 = JFS. It is usually written as a linear combination

JFS = t
↵
J↵ (2.3)

relative to a basis J↵ of (1, 1) forms (where ↵ = 1, . . . , h1,1(X)), also obtained by restriction from the
ambient space. Here t↵ are the Kähler parameters. Associated to these Kähler forms are volume forms
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for some function f on X. We will see later how numerical results for JCY (and, indeed, JFS) can be
used the evaluate such integrals numerically. For the constant function f = 1 this computes the CY
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which coincides for the CY and FS measure (provided, as we assume, JCY and JFS are in the same
cohomology class) and which can be computed from the topological formula on the RHS of Eq. (2.6).
Here

d↵�� =

Z

X

J↵ ^ J� ^ J� . (2.7)

are the intersection numbers which are known or can be computed for CICY and KS manifolds (our
package does this automatically in the background).

2.2 Line bundle slopes

Another interesting set of quantities which can be used for the same purpose (and we will, in fact, use it
to enforce the correct Kähler class during training) is the slope of line bundles. The line bundle L ! X

with first Chern class c1(L) = [k↵J↵] is denoted by OX(k) and its slope µt(OX(k)) is defined by
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Note, since the intersection numbers are known, this can be computed from the Kähler parameters t↵

and the line bundle integers k↵. On the other hand, introducing the curvature FFS and corresponding
sources ⇢FS and ⇢CY on OX(k) by
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The numerical version of this equation will be used to compute line bundle slopes during training and
compute the slope loss, in order to enforce the correct Kähler class.
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typical problem: integrate function            over CY f : X ! C
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for some function f on X. We will see later how numerical results for JCY (and, indeed, JFS) can be
used the evaluate such integrals numerically. For the constant function f = 1 this computes the CY
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which coincides for the CY and FS measure (provided, as we assume, JCY and JFS are in the same
cohomology class) and which can be computed from the topological formula on the RHS of Eq. (2.6).
Here
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are the intersection numbers which are known or can be computed for CICY and KS manifolds (our
package does this automatically in the background).
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Note, since the intersection numbers are known, this can be computed from the Kähler parameters t↵

and the line bundle integers k↵. On the other hand, introducing the curvature FFS and corresponding
sources ⇢FS and ⇢CY on OX(k) by
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Line bundle slopes

Line bundle        with curvature                and slope  OX(k)
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Volume forms and integration

2.3 Constructing the holomorphic top form

For our purposes we need to construct the holomorphic top form ⌦ explicitly and we follow a method
described, for example, in Ref. [47]. For a KS manifold, defined as a hypersurface in a toric four-fold
A there are always four a�ne ambient space coordinates z

µ, where µ = 1, . . . , 4, on a given patch,
explicitly given in Eq. (A.5). Then we can write the holomorphic (3, 0) form as

⌦ =
dz1 ^ dz2 ^ dz3

@p/@z4
, (2.11)

where the coordinate z4 in the denominator should be replaced by a solution z4 = z4(za), where
a = 1, 2, 3, of the defining equation p(zµ) = 0. More details on the underlying toric geometry can be
found in Appendix A.

For the case of CICYs, defined in an ambient space A = Pn1 ⇥ · · · ⇥ Pnh with total dimension d =P
h

↵=1 n↵, we have a�ne coordinates zµ, where µ = 1, . . . , d on each patch. From these we can choose
three coordinates, za, where a = 1, 2, 3, to parameterize the CY patch while the remaining K = d � 3
coordinates z

q can be written as functions z
q = z

q(za) by using the K defining polynomials pr of the
CICY. The holomorphic (3, 0)-form can then be written in terms of the determinant of the K ⇥ K

matrix @pr/@z
q, and is explicitly given by

⌦ =
dz1 ^ dz2 ^ dz3

det(@pr/@zq)
, (2.12)

where the coordinates zq in the denominator have to be replaced by the solutions zq = z
q(za).

Given ⌦, it is useful to introduce the associated volume form

dVol⌦ = ⌦ ^ ⌦̄ ) dVolCY =


3!
dVol⌦ (2.13)

which, by virtue of the Monge-Ampere equation (2.2) and Eq. (2.4), is proportional to the CY volume
form. This means, while the Ricci-flat CY metric is not known in analytic form, its associated volume
form can be constructed explicitly (up to a constant) from the expression for ⌦.

2.4 Transition functions

The a�ne coordinates on each patch of the (toric) ambient space patch can be written as functions of
the homogeneous coordinates xi (see Appendix A.2). More explicitly, for two ambient space patches U
and V with a�ne coordinates uµ and v

⌫ ,3 respectively, we can write u
µ = u

µ(x) and v
⌫ = v

⌫(x), where
the functional dependence on x

i is determined by Eq. (A.5). The transition function v
⌫ = v

⌫(u) can
then be determined by matching the functional dependence on the homogeneous coordinates x

i. The
transition matrix is then simply the Jacobian of this coordinate change,

(TUV)
⌫

µ =
@v

⌫

@uµ
. (2.14)

3
We caution the reader not to confuse these a�ne coordinates uµ

and v⌫ with e.g. the toric vertices discussed in other

sections of this paper.
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which coincides for the CY and FS measure (provided, as we assume, JCY and JFS are in the same
cohomology class) and which can be computed from the topological formula on the RHS of Eq. (2.6).
Here

d↵�� =
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are the intersection numbers which are known or can be computed for CICY and KS manifolds (our
package does this automatically in the background).
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Another interesting set of quantities which can be used for the same purpose (and we will, in fact, use it
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Note, since the intersection numbers are known, this can be computed from the Kähler parameters t↵
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The numerical version of this equation will be used to compute line bundle slopes during training and
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Fubini-Study Kähler form denoted by J
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which coincides for the CY and FS measure (provided, as we assume, JCY and JFS are in the same
cohomology class) and which can be computed from the topological formula on the RHS of Eq. (2.6).
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2.6 Numeric integration

Numeric integration can be performed using Monte-Carlo methods (for a method developed recently
based on rejection sampling from tropical densities see [48]). The basic goal is to be able to numerically
evaluate integrals of the form

Z

X

dVolCY f . (2.23)

for a function f on a CY manifold X (of CICY or KS type). To do this, we require a sample of points
pi 2 X, where i = 1, . . . , N , which are distributed according to a known measure, denoted by dA, which
we discuss in detail below. In terms of the so-called weights (or masses), customarily defined as

wi =
dVol⌦
dA

����
pi

. (2.24)

and the function values f(pi), the integral (2.23) can be approximated by
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f '
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6N

NX

i=1

wif(pi) , (2.25)

where (2.13) has been used. On the other hand, since the Ricci-flat CY metric is calculated numeri-
cally, there is no real need to rely on the measure dVol⌦ and the integral (2.23) can alternatively be
approximated by

Z

X

dVolCY f '
1

N

NX

i=1

w̃i det(gCY(pi)) f(pi) , w̃i =
d
6
y

dA

����
pi

. (2.26)

In the following we refer to the quantities w̃i as the auxiliary weights. The approximation (2.26) has a
certain advantage in that it does not contain any unknown coe�cient, such as  in Eq. (2.25), which
need to be fixed by a reference calculation.

2.7 Sampling points on toric varieties

We now discuss a method for generating the sample points pi with a known distribution dA on the
CY X. In principle, this could be done by a Markov chain Monte-Carlo method using, for example,
the Fubini-Study measure for dA, so dA = dVolFS. Here, we pursue a di↵erent approach based on a
theorem by Shi↵man and Zelditch [49], further generalized and explained in [16, 17]. This provides us
with a viable method for ambient spaces which are products of projective spaces, and hence applies
straightforwardly to CICYs. Importantly, using the techniques introduced in section 2.5, which allow
us to write the toric Kähler potential in terms of a FS potential in the projectivized section space
PH0(J↵) ⇠= r↵ of the Kähler cone generators J↵, we can apply the same method to the toric case, as
we will now explain.

To construct dA, we first compute the sections (2.16) and construct the associated FS Kähler potentials
K↵ as in Eq. (2.18). Shi↵man and Zelditch now state that the zeros of random sections are distributed
w.r.t. to the (known) FS measure constructed from log(KFS) = log

P
n

i=0 |si|
2. Hence, we need to find
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To construct dA, we first compute the sections (2.16) and construct the associated FS Kähler potentials
K↵ as in Eq. (2.18). Shi↵man and Zelditch now state that the zeros of random sections are distributed
w.r.t. to the (known) FS measure constructed from log(KFS) = log

P
n

i=0 |si|
2. Hence, we need to find

10

weights

-> two tasks: 1) Generate point sample and 2) compute metric



Numerical integration

Point sample         distributed according to known measure     :  pi 2 X
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2.6 Numeric integration

Numeric integration can be performed using Monte-Carlo methods (for a method developed recently
based on rejection sampling from tropical densities see [48]). The basic goal is to be able to numerically
evaluate integrals of the form

Z

X

dVolCY f . (2.23)

for a function f on a CY manifold X (of CICY or KS type). To do this, we require a sample of points
pi 2 X, where i = 1, . . . , N , which are distributed according to a known measure, denoted by dA, which
we discuss in detail below. In terms of the so-called weights (or masses), customarily defined as

wi =
dVol⌦
dA

����
pi

. (2.24)

and the function values f(pi), the integral (2.23) can be approximated by

Z

X

dVolCY f =

Z

X

dA
dVolCY

dA
f '



6N

NX

i=1

wif(pi) , (2.25)

where (2.13) has been used. On the other hand, since the Ricci-flat CY metric is calculated numeri-
cally, there is no real need to rely on the measure dVol⌦ and the integral (2.23) can alternatively be
approximated by

Z

X

dVolCY f '
1

N

NX

i=1

w̃i det(gCY(pi)) f(pi) , w̃i =
d
6
y

dA

����
pi

. (2.26)

In the following we refer to the quantities w̃i as the auxiliary weights. The approximation (2.26) has a
certain advantage in that it does not contain any unknown coe�cient, such as  in Eq. (2.25), which
need to be fixed by a reference calculation.

2.7 Sampling points on toric varieties

We now discuss a method for generating the sample points pi with a known distribution dA on the
CY X. In principle, this could be done by a Markov chain Monte-Carlo method using, for example,
the Fubini-Study measure for dA, so dA = dVolFS. Here, we pursue a di↵erent approach based on a
theorem by Shi↵man and Zelditch [49], further generalized and explained in [16, 17]. This provides us
with a viable method for ambient spaces which are products of projective spaces, and hence applies
straightforwardly to CICYs. Importantly, using the techniques introduced in section 2.5, which allow
us to write the toric Kähler potential in terms of a FS potential in the projectivized section space
PH0(J↵) ⇠= r↵ of the Kähler cone generators J↵, we can apply the same method to the toric case, as
we will now explain.

To construct dA, we first compute the sections (2.16) and construct the associated FS Kähler potentials
K↵ as in Eq. (2.18). Shi↵man and Zelditch now state that the zeros of random sections are distributed
w.r.t. to the (known) FS measure constructed from log(KFS) = log

P
n

i=0 |si|
2. Hence, we need to find

10

weights

-> two tasks: 1) Generate point sample and 2) compute metric

Point sampling
CICYs: Use a thm by Shiffman and Zelditch which leads to point sample 
         distributed according to a measure     based on Fubini-Study forms. dA
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<latexit sha1_base64="X416HNtvfKcsKybq9jm81IgVL1A=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgFe4kooVFwMYygkkOkiPsbSbJkr29c3dPCEf+hI2FIrb+HTv/jZvkCk18MPB4b4aZeWEiuDau++0U1tY3NreK26Wd3b39g/LhUUvHqWLYZLGIlR9SjYJLbBpuBPqJQhqFAtvh+Hbmt59QaR7LBzNJMIjoUPIBZ9RYyU96vMsl8Xvlilt15yCrxMtJBXI0euWvbj9maYTSMEG17nhuYoKMKsOZwGmpm2pMKBvTIXYslTRCHWTze6fkzCp9MoiVLWnIXP09kdFI60kU2s6ImpFe9mbif14nNYPrIOMySQ1Ktlg0SAUxMZk9T/pcITNiYgllittbCRtRRZmxEZVsCN7yy6ukdVH1atXL+1qlfpPHUYQTOIVz8OAK6nAHDWgCAwHP8ApvzqPz4rw7H4vWgpPPHMMfOJ8/nt6Prw==</latexit>

dA

<latexit sha1_base64="JkAMXFvpS68n/nyvcU5pkeOXp0A=">AAAB6XicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0cIiYmMZxXxAcoS9vb1kyd7esTsnhJB/YGOhiK3/yM5/4ya5QhMfDDzem2FmXpBKYdB1v53Cyura+kZxs7S1vbO7V94/aJok04w3WCIT3Q6o4VIo3kCBkrdTzWkcSN4KhrdTv/XEtRGJesRRyv2Y9pWIBKNopYfwpleuuFV3BrJMvJxUIEe9V/7qhgnLYq6QSWpMx3NT9MdUo2CST0rdzPCUsiHt846lisbc+OPZpRNyYpWQRIm2pZDM1N8TYxobM4oD2xlTHJhFbyr+53UyjK78sVBphlyx+aIokwQTMn2bhEJzhnJkCWVa2FsJG1BNGdpwSjYEb/HlZdI8q3rn1Yv780rtOo+jCEdwDKfgwSXU4A7q0AAGETzDK7w5Q+fFeXc+5q0FJ585hD9wPn8AUI6NNQ==</latexit>

2.6 Numeric integration

Numeric integration can be performed using Monte-Carlo methods (for a method developed recently
based on rejection sampling from tropical densities see [48]). The basic goal is to be able to numerically
evaluate integrals of the form

Z

X

dVolCY f . (2.23)

for a function f on a CY manifold X (of CICY or KS type). To do this, we require a sample of points
pi 2 X, where i = 1, . . . , N , which are distributed according to a known measure, denoted by dA, which
we discuss in detail below. In terms of the so-called weights (or masses), customarily defined as

wi =
dVol⌦
dA
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pi

. (2.24)

and the function values f(pi), the integral (2.23) can be approximated by
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dVolCY f =
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dA
dVolCY

dA
f '
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6N

NX

i=1

wif(pi) , (2.25)

where (2.13) has been used. On the other hand, since the Ricci-flat CY metric is calculated numeri-
cally, there is no real need to rely on the measure dVol⌦ and the integral (2.23) can alternatively be
approximated by

Z

X

dVolCY f '
1

N

NX

i=1

w̃i det(gCY(pi)) f(pi) , w̃i =
d
6
y

dA

����
pi

. (2.26)

In the following we refer to the quantities w̃i as the auxiliary weights. The approximation (2.26) has a
certain advantage in that it does not contain any unknown coe�cient, such as  in Eq. (2.25), which
need to be fixed by a reference calculation.

2.7 Sampling points on toric varieties

We now discuss a method for generating the sample points pi with a known distribution dA on the
CY X. In principle, this could be done by a Markov chain Monte-Carlo method using, for example,
the Fubini-Study measure for dA, so dA = dVolFS. Here, we pursue a di↵erent approach based on a
theorem by Shi↵man and Zelditch [49], further generalized and explained in [16, 17]. This provides us
with a viable method for ambient spaces which are products of projective spaces, and hence applies
straightforwardly to CICYs. Importantly, using the techniques introduced in section 2.5, which allow
us to write the toric Kähler potential in terms of a FS potential in the projectivized section space
PH0(J↵) ⇠= r↵ of the Kähler cone generators J↵, we can apply the same method to the toric case, as
we will now explain.

To construct dA, we first compute the sections (2.16) and construct the associated FS Kähler potentials
K↵ as in Eq. (2.18). Shi↵man and Zelditch now state that the zeros of random sections are distributed
w.r.t. to the (known) FS measure constructed from log(KFS) = log

P
n

i=0 |si|
2. Hence, we need to find
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weights

-> two tasks: 1) Generate point sample and 2) compute metric

Point sampling
CICYs: Use a thm by Shiffman and Zelditch which leads to point sample 
         distributed according to a measure     based on Fubini-Study forms. dA
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KS CYs: Have generalised above method to toric case by embedding 
          CY    into              .  X
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Numerical integration

Point sample         distributed according to known measure     :  pi 2 X
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2.6 Numeric integration

Numeric integration can be performed using Monte-Carlo methods (for a method developed recently
based on rejection sampling from tropical densities see [48]). The basic goal is to be able to numerically
evaluate integrals of the form

Z

X

dVolCY f . (2.23)

for a function f on a CY manifold X (of CICY or KS type). To do this, we require a sample of points
pi 2 X, where i = 1, . . . , N , which are distributed according to a known measure, denoted by dA, which
we discuss in detail below. In terms of the so-called weights (or masses), customarily defined as

wi =
dVol⌦
dA

����
pi

. (2.24)

and the function values f(pi), the integral (2.23) can be approximated by

Z

X

dVolCY f =

Z

X

dA
dVolCY

dA
f '



6N

NX

i=1

wif(pi) , (2.25)

where (2.13) has been used. On the other hand, since the Ricci-flat CY metric is calculated numeri-
cally, there is no real need to rely on the measure dVol⌦ and the integral (2.23) can alternatively be
approximated by

Z

X

dVolCY f '
1

N

NX

i=1

w̃i det(gCY(pi)) f(pi) , w̃i =
d
6
y

dA

����
pi

. (2.26)

In the following we refer to the quantities w̃i as the auxiliary weights. The approximation (2.26) has a
certain advantage in that it does not contain any unknown coe�cient, such as  in Eq. (2.25), which
need to be fixed by a reference calculation.

2.7 Sampling points on toric varieties

We now discuss a method for generating the sample points pi with a known distribution dA on the
CY X. In principle, this could be done by a Markov chain Monte-Carlo method using, for example,
the Fubini-Study measure for dA, so dA = dVolFS. Here, we pursue a di↵erent approach based on a
theorem by Shi↵man and Zelditch [49], further generalized and explained in [16, 17]. This provides us
with a viable method for ambient spaces which are products of projective spaces, and hence applies
straightforwardly to CICYs. Importantly, using the techniques introduced in section 2.5, which allow
us to write the toric Kähler potential in terms of a FS potential in the projectivized section space
PH0(J↵) ⇠= r↵ of the Kähler cone generators J↵, we can apply the same method to the toric case, as
we will now explain.

To construct dA, we first compute the sections (2.16) and construct the associated FS Kähler potentials
K↵ as in Eq. (2.18). Shi↵man and Zelditch now state that the zeros of random sections are distributed
w.r.t. to the (known) FS measure constructed from log(KFS) = log

P
n

i=0 |si|
2. Hence, we need to find

10

weights

-> two tasks: 1) Generate point sample and 2) compute metric

Point sampling
CICYs: Use a thm by Shiffman and Zelditch which leads to point sample 
         distributed according to a measure     based on Fubini-Study forms. dA
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KS CYs: Have generalised above method to toric case by embedding 
          CY    into              .  X
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Computing metric

Fully connection feed-forward NN which represents metric.



Computational realisation
Point generator
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Neural network
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x 7! �(Wnx+ bn)
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Point generator
Generates points on CY with known measure dA
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Neural network

. . .x 7! �(W1x+ b1)
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x 7! �(Wnx+ bn)
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gNN(x)
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= gNN
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Point generator
Generates points on CY with known measure dA
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x 7! �(Wnx+ bn)
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gNN(x)
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= gNN
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Name Ansatz

Free gpr = gNN

Additive gpr = gFS + gNN

Multiplicative, element-wise gpr = gFS + gFS � gNN

Multiplicative, matrix gpr = gFS + gFS · gNN

�-model gpr = gFS + @@̄�

Table 1: Di↵erent Ansätze for the neural network prediction of the Ricci-flat metric.

From this brief summary, it is clear that designing a NN to perform a certain task involves choosing
a number of hyperparameters, that specify the network’s properties. For fully connected NNs, this
amounts to specifying the width and depth of the network, which activation functions to use, and the
number of batches and epochs. More advanced network components, such as convolutional or dropout
layers (see, for example, Ref. [29] for a recent discussion), require additional hyperparameters. For our
task, previous studies [32–34] have shown that a simple fully connected NN exhibits good performance.
Consequently, we focus on this setting, leaving studies involving more advanced NN architectures for
the future. We build the networks using TensorFlow [40], an ML library with functionalities that suit
our needs. In particular, TensorFlow allows to construct the NNs in a sequential manner, and has
di↵erentiation functions that allow us to compute derivatives with respect to the input data.

4.2 Network architectures

The basic idea underlying machine learning of CY metrics is to use a NN whose associated functions
f✓ represent metrics on the manifold. In other words, the NN input consists of a point p 2 X on the
CY manifold and its output represents a metric g(p) at this point. There are a number of concrete
realizations of this idea. Since CY three-folds X are complex manifolds, their metrics g(p) at each point
p 2 X can be written, relative to a local choice of complex coordinates, as a Hermitian 3 ⇥ 3 matrix.
The first, and most obvious, approach is then to let the NN predict the nine independent entries (three
real entries on the diagonal, and three complex entries on the o↵-diagonal) of this matrix. While this
is possible, it does not take advantage of the mathematical knowledge we have about CY manifolds.
For example, equation (2.2) shows that the CY metric is given by an exact correction to some reference
Kähler metric gFS. Moreover, by constructing CY manifolds as a hypersurfaces or complete intersection
in an ambient space, one can construct the metric gFS explicitly by pullback from the ambient space A.

The cymetric package realizes five choices for how the metric gpr predicted by the NN is related to
the function gNN that the NN actually represents. These possibilities are summarized in Table 1. The
first and most obvious choice, gpr = gNN, has been included for reference but is by no means the
optimal one. A metric is required to be non-singular and this condition can easily be violated for a
randomly initialized or stochastically trained NN. A NN which ’accidentally’ represents a singular or
near-singular metric can lead to numerical problems. Also, for this choice, the NN has to cope with
the entire numerical variation of the metric gpr. Both problems can be solved, or at least alleviated,
by writing gpr = gFS + correction, and the four other possibilities in Table 1 are of this form. Indeed,
using the non-singular metric gFS as a background makes accidentally generating singular metrics less
likely (and, if there is an actual singularity in the space, the reference FS metric will already have this
feature). Furthermore, under the plausible assumption that the entries of gCY�gFS are typically smaller
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than the ones in gCY, a NN dealing with a metric correction involves smaller numbers, likely leading
to enhanced numerical stability. As Table 1 shows, gpr may be defined additively, gpr = gFS + gNN, via
element-wise multiplication, gpr = gFS + gFS � gNN, or via matrix multiplication, gpr = gFS + gFS · gNN.
Finally, using the full information contained in Eq. (2.2), we may set gpr = gFS + @@̄�, where the NN
represents the real function �.

While we have already argued that the free NN is likely ine�cient, there is no telling which of the other
four Ansätze in Table 1 will be most e�cient in learning the Ricci-flat metric on a given CY manifold. For
example, while the �-model automatically gives a Kähler metric, it requires two additional derivatives
on the input, which come at a computational cost. For this reason, the cymetric package makes all
these options available for the user to explore. In the ensuing section, we will compare the performance
of the di↵erent NNs on the quintic.

In each experiment the NN is trained on input data which consists of a set {pi} of points on the CY
manifold. These points are generated using the method described in section 2.7. They are, by the
theorem of Shi↵man and Zelditch, distributed with respect to a measure dA, which is inherited from
the ambient space. This allows to compute any integrals used in the training and validation processes
as weighted sums, following Eqs. (2.25) and (2.26).

As discussed above, the learning of NNs is governed by the minimization of loss functions. A CY metric
must satisfy a number of mathematical constraints, listed in section 2. We encode these restrictions in
a custom loss function

L = ↵1LMA + ↵2LdJ + ↵3Ltransition + ↵4LRicci + ↵5LKclass (4.2)

where ↵i are hyperparameters of the NN with default value ↵i = 1.0, and the individual loss contribu-
tions are defined as follows:

• Monge-Ampère loss LMA

The Monge-Ampère loss is defined as

LMA =

����

����1�
1



det gpr
⌦ ^ ⌦̄

����

����
n

, (4.3)

and it ensures that the metric satisfies the Monge-Ampère equation (2.2), as required by the
Calabi–Yau theorem. This loss may be computed with any Ln norm, as indicated by the subscript
n (default is n = 1).5

• Ricci loss LRicci

The Ricci loss is defined by

LRicci = ||R||n =
����@@̄ ln det gpr

����
n
, (4.4)

and it ensures that the metric has vanishing Ricci scalar.6 This is a necessary condition for the
metric to satisfy the stronger CY requirement of having vanishing Ricci tensor. Again, this loss
function may be computed with di↵erent Ln norms, with default n = 1.

5
The choice of Ln norm will a↵ect the training of the network. A high n pushes the network to reduce outliers, that is,

large loss function contributions that are localized at a few points. With a low n, the NN will instead strive to reduce the

loss function of all points with equal weight. From our experiments, the default values chosen in cymetric lead to good

performance on the manifolds we have studied.
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Loss function

than the ones in gCY, a NN dealing with a metric correction involves smaller numbers, likely leading
to enhanced numerical stability. As Table 1 shows, gpr may be defined additively, gpr = gFS + gNN, via
element-wise multiplication, gpr = gFS + gFS � gNN, or via matrix multiplication, gpr = gFS + gFS · gNN.
Finally, using the full information contained in Eq. (2.2), we may set gpr = gFS + @@̄�, where the NN
represents the real function �.

While we have already argued that the free NN is likely ine�cient, there is no telling which of the other
four Ansätze in Table 1 will be most e�cient in learning the Ricci-flat metric on a given CY manifold. For
example, while the �-model automatically gives a Kähler metric, it requires two additional derivatives
on the input, which come at a computational cost. For this reason, the cymetric package makes all
these options available for the user to explore. In the ensuing section, we will compare the performance
of the di↵erent NNs on the quintic.

In each experiment the NN is trained on input data which consists of a set {pi} of points on the CY
manifold. These points are generated using the method described in section 2.7. They are, by the
theorem of Shi↵man and Zelditch, distributed with respect to a measure dA, which is inherited from
the ambient space. This allows to compute any integrals used in the training and validation processes
as weighted sums, following Eqs. (2.25) and (2.26).

As discussed above, the learning of NNs is governed by the minimization of loss functions. A CY metric
must satisfy a number of mathematical constraints, listed in section 2. We encode these restrictions in
a custom loss function

L = ↵1LMA + ↵2LdJ + ↵3Ltransition + ↵4LRicci + ↵5LKclass (4.2)

where ↵i are hyperparameters of the NN with default value ↵i = 1.0, and the individual loss contribu-
tions are defined as follows:

• Monge-Ampère loss LMA

The Monge-Ampère loss is defined as
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and it ensures that the metric satisfies the Monge-Ampère equation (2.2), as required by the
Calabi–Yau theorem. This loss may be computed with any Ln norm, as indicated by the subscript
n (default is n = 1).5
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Monge-Ampere loss: 

Kahler loss: 

• Kähler loss LdJ

The Kähler loss, defined by

LdJ =
X

ijk

||Re cijk||n + ||Im cijk||n , (4.5)

where cijk = gij̄,k � gkj̄,i and gij̄,k = @kgij̄ ensures that dJ = 0, so that the metric is Kähler. The
default for the Ln norm is n = 2.

• Transition loss Ltransition

The transition loss function ensures that gij̄ transforms as a complex tensor under coordinate
transformations. For the additive and multiplicative networks, this is implemented as

Ltransition =
1

d
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U ,V
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���gVpr � TUV · g

U
pr · (TUV)

†
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���
n

, (4.6)

where (TUV)⌫µ = @v
⌫
/@u

µ are the transition matrices between patches U and V, with local coor-
dinates u and v, respectively. Moreover, d is the number of patch transitions, and the default for
the norm is n = 1.

• Kähler class loss LKclass

Finally, since we would like to compute the Ricci-flat metric for given Kähler parameters t↵, we
require a loss contribution which enforces the correct Kähler class7. It may appear this is not
necessary for the �-model — provided gFS is set up with the correct Kähler class, the addition
@@̄� is exact and, hence, does not change the class. While this is true mathematically, it depends
on � being a function (rather than a section), a condition which is di�cult to enforce on a NN.
For the other models in Table 1 there is no mathematical reason for the Kähler class to remain
unchanged. In order to fix the Kähler class we define the Kähler class loss function as

LKclass =
1

h1,1(X)

h
1,1(X)X

↵=1
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����µt(OX(e↵))�
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J
2
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. (4.7)

Here, OX(e↵) are the line bundles specified by integers (e↵)� = �
�
↵, FFS,↵ = �iJ↵/(2⇡) are

their associated field strengths and µt(OX(e↵) their slopes for the given Kähler parameters t↵, as
computed from the topological formula, Eq. (2.8). For the norm, the default is n = 1. Conversely,
these slope values on the “line bundle basis”OX(e↵), ↵ = 1, . . . , h1,1(X), fix the Kähler parameters
uniquely and this is the basic idea behind Eq. (4.7): by enforcing the correct slopes we enforce
the correct Kähler class.

The slope integral in Eq. (4.7) is evaluated numerically using MC integration, that is, integrals of
the form (2.10) are computed using Eq. (2.26). Note that this integral requires a large batch size to
provide a good approximation to the slope, while the other losses benefit from gradient descent with
small mini-batches. Hence, we break each training epoch of the NN into two optimization steps
with two di↵erent batch sizes (we do use the same optimizer, to transfer some of the information,
like momentum, between the two batches). A small batch size (default is 64 points) is used for
all above contributions to the loss function while a large one (defaults to 10, 000 points or the

7
This is not essential for manifolds with h1,1

(X) = 1 (such as the quintic), since all Kähler classes are obtained by

simple metric rescaling. However, it is critical in order to generate metrics with a well-defined Kähler class for h1,1
(X) > 1.
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Ricci loss: 

than the ones in gCY, a NN dealing with a metric correction involves smaller numbers, likely leading
to enhanced numerical stability. As Table 1 shows, gpr may be defined additively, gpr = gFS + gNN, via
element-wise multiplication, gpr = gFS + gFS � gNN, or via matrix multiplication, gpr = gFS + gFS · gNN.
Finally, using the full information contained in Eq. (2.2), we may set gpr = gFS + @@̄�, where the NN
represents the real function �.

While we have already argued that the free NN is likely ine�cient, there is no telling which of the other
four Ansätze in Table 1 will be most e�cient in learning the Ricci-flat metric on a given CY manifold. For
example, while the �-model automatically gives a Kähler metric, it requires two additional derivatives
on the input, which come at a computational cost. For this reason, the cymetric package makes all
these options available for the user to explore. In the ensuing section, we will compare the performance
of the di↵erent NNs on the quintic.

In each experiment the NN is trained on input data which consists of a set {pi} of points on the CY
manifold. These points are generated using the method described in section 2.7. They are, by the
theorem of Shi↵man and Zelditch, distributed with respect to a measure dA, which is inherited from
the ambient space. This allows to compute any integrals used in the training and validation processes
as weighted sums, following Eqs. (2.25) and (2.26).

As discussed above, the learning of NNs is governed by the minimization of loss functions. A CY metric
must satisfy a number of mathematical constraints, listed in section 2. We encode these restrictions in
a custom loss function

L = ↵1LMA + ↵2LdJ + ↵3Ltransition + ↵4LRicci + ↵5LKclass (4.2)

where ↵i are hyperparameters of the NN with default value ↵i = 1.0, and the individual loss contribu-
tions are defined as follows:

• Monge-Ampère loss LMA

The Monge-Ampère loss is defined as

LMA =
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n

, (4.3)

and it ensures that the metric satisfies the Monge-Ampère equation (2.2), as required by the
Calabi–Yau theorem. This loss may be computed with any Ln norm, as indicated by the subscript
n (default is n = 1).5

• Ricci loss LRicci

The Ricci loss is defined by

LRicci = ||R||n =
����@@̄ ln det gpr

����
n
, (4.4)

and it ensures that the metric has vanishing Ricci scalar.6 This is a necessary condition for the
metric to satisfy the stronger CY requirement of having vanishing Ricci tensor. Again, this loss
function may be computed with di↵erent Ln norms, with default n = 1.

5
The choice of Ln norm will a↵ect the training of the network. A high n pushes the network to reduce outliers, that is,

large loss function contributions that are localized at a few points. With a low n, the NN will instead strive to reduce the

loss function of all points with equal weight. From our experiments, the default values chosen in cymetric lead to good

performance on the manifolds we have studied.

6
Recall that for Kähler metrics, the Ricci scalar simplifies to R = gij̄@i@̄j̄ log det(g).
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Kahler class loss: 

• Kähler loss LdJ

The Kähler loss, defined by

LdJ =
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where cijk = gij̄,k � gkj̄,i and gij̄,k = @kgij̄ ensures that dJ = 0, so that the metric is Kähler. The
default for the Ln norm is n = 2.

• Transition loss Ltransition
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µ are the transition matrices between patches U and V, with local coor-
dinates u and v, respectively. Moreover, d is the number of patch transitions, and the default for
the norm is n = 1.

• Kähler class loss LKclass

Finally, since we would like to compute the Ricci-flat metric for given Kähler parameters t↵, we
require a loss contribution which enforces the correct Kähler class7. It may appear this is not
necessary for the �-model — provided gFS is set up with the correct Kähler class, the addition
@@̄� is exact and, hence, does not change the class. While this is true mathematically, it depends
on � being a function (rather than a section), a condition which is di�cult to enforce on a NN.
For the other models in Table 1 there is no mathematical reason for the Kähler class to remain
unchanged. In order to fix the Kähler class we define the Kähler class loss function as
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Here, OX(e↵) are the line bundles specified by integers (e↵)� = �
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their associated field strengths and µt(OX(e↵) their slopes for the given Kähler parameters t↵, as
computed from the topological formula, Eq. (2.8). For the norm, the default is n = 1. Conversely,
these slope values on the “line bundle basis”OX(e↵), ↵ = 1, . . . , h1,1(X), fix the Kähler parameters
uniquely and this is the basic idea behind Eq. (4.7): by enforcing the correct slopes we enforce
the correct Kähler class.

The slope integral in Eq. (4.7) is evaluated numerically using MC integration, that is, integrals of
the form (2.10) are computed using Eq. (2.26). Note that this integral requires a large batch size to
provide a good approximation to the slope, while the other losses benefit from gradient descent with
small mini-batches. Hence, we break each training epoch of the NN into two optimization steps
with two di↵erent batch sizes (we do use the same optimizer, to transfer some of the information,
like momentum, between the two batches). A small batch size (default is 64 points) is used for
all above contributions to the loss function while a large one (defaults to 10, 000 points or the
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Loss function

than the ones in gCY, a NN dealing with a metric correction involves smaller numbers, likely leading
to enhanced numerical stability. As Table 1 shows, gpr may be defined additively, gpr = gFS + gNN, via
element-wise multiplication, gpr = gFS + gFS � gNN, or via matrix multiplication, gpr = gFS + gFS · gNN.
Finally, using the full information contained in Eq. (2.2), we may set gpr = gFS + @@̄�, where the NN
represents the real function �.

While we have already argued that the free NN is likely ine�cient, there is no telling which of the other
four Ansätze in Table 1 will be most e�cient in learning the Ricci-flat metric on a given CY manifold. For
example, while the �-model automatically gives a Kähler metric, it requires two additional derivatives
on the input, which come at a computational cost. For this reason, the cymetric package makes all
these options available for the user to explore. In the ensuing section, we will compare the performance
of the di↵erent NNs on the quintic.

In each experiment the NN is trained on input data which consists of a set {pi} of points on the CY
manifold. These points are generated using the method described in section 2.7. They are, by the
theorem of Shi↵man and Zelditch, distributed with respect to a measure dA, which is inherited from
the ambient space. This allows to compute any integrals used in the training and validation processes
as weighted sums, following Eqs. (2.25) and (2.26).

As discussed above, the learning of NNs is governed by the minimization of loss functions. A CY metric
must satisfy a number of mathematical constraints, listed in section 2. We encode these restrictions in
a custom loss function

L = ↵1LMA + ↵2LdJ + ↵3Ltransition + ↵4LRicci + ↵5LKclass (4.2)

where ↵i are hyperparameters of the NN with default value ↵i = 1.0, and the individual loss contribu-
tions are defined as follows:
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and it ensures that the metric has vanishing Ricci scalar.6 This is a necessary condition for the
metric to satisfy the stronger CY requirement of having vanishing Ricci tensor. Again, this loss
function may be computed with di↵erent Ln norms, with default n = 1.
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As discussed above, the learning of NNs is governed by the minimization of loss functions. A CY metric
must satisfy a number of mathematical constraints, listed in section 2. We encode these restrictions in
a custom loss function

L = ↵1LMA + ↵2LdJ + ↵3Ltransition + ↵4LRicci + ↵5LKclass (4.2)

where ↵i are hyperparameters of the NN with default value ↵i = 1.0, and the individual loss contribu-
tions are defined as follows:

• Monge-Ampère loss LMA

The Monge-Ampère loss is defined as

LMA =
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, (4.3)

and it ensures that the metric satisfies the Monge-Ampère equation (2.2), as required by the
Calabi–Yau theorem. This loss may be computed with any Ln norm, as indicated by the subscript
n (default is n = 1).5

• Ricci loss LRicci

The Ricci loss is defined by

LRicci = ||R||n =
����@@̄ ln det gpr

����
n
, (4.4)

and it ensures that the metric has vanishing Ricci scalar.6 This is a necessary condition for the
metric to satisfy the stronger CY requirement of having vanishing Ricci tensor. Again, this loss
function may be computed with di↵erent Ln norms, with default n = 1.

5
The choice of Ln norm will a↵ect the training of the network. A high n pushes the network to reduce outliers, that is,

large loss function contributions that are localized at a few points. With a low n, the NN will instead strive to reduce the

loss function of all points with equal weight. From our experiments, the default values chosen in cymetric lead to good

performance on the manifolds we have studied.

6
Recall that for Kähler metrics, the Ricci scalar simplifies to R = gij̄@i@̄j̄ log det(g).
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Monge-Ampere loss: 

Kahler loss: 

• Kähler loss LdJ

The Kähler loss, defined by

LdJ =
X

ijk

||Re cijk||n + ||Im cijk||n , (4.5)

where cijk = gij̄,k � gkj̄,i and gij̄,k = @kgij̄ ensures that dJ = 0, so that the metric is Kähler. The
default for the Ln norm is n = 2.

• Transition loss Ltransition

The transition loss function ensures that gij̄ transforms as a complex tensor under coordinate
transformations. For the additive and multiplicative networks, this is implemented as

Ltransition =
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where (TUV)⌫µ = @v
⌫
/@u

µ are the transition matrices between patches U and V, with local coor-
dinates u and v, respectively. Moreover, d is the number of patch transitions, and the default for
the norm is n = 1.

• Kähler class loss LKclass

Finally, since we would like to compute the Ricci-flat metric for given Kähler parameters t↵, we
require a loss contribution which enforces the correct Kähler class7. It may appear this is not
necessary for the �-model — provided gFS is set up with the correct Kähler class, the addition
@@̄� is exact and, hence, does not change the class. While this is true mathematically, it depends
on � being a function (rather than a section), a condition which is di�cult to enforce on a NN.
For the other models in Table 1 there is no mathematical reason for the Kähler class to remain
unchanged. In order to fix the Kähler class we define the Kähler class loss function as

LKclass =
1
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Here, OX(e↵) are the line bundles specified by integers (e↵)� = �
�
↵, FFS,↵ = �iJ↵/(2⇡) are

their associated field strengths and µt(OX(e↵) their slopes for the given Kähler parameters t↵, as
computed from the topological formula, Eq. (2.8). For the norm, the default is n = 1. Conversely,
these slope values on the “line bundle basis”OX(e↵), ↵ = 1, . . . , h1,1(X), fix the Kähler parameters
uniquely and this is the basic idea behind Eq. (4.7): by enforcing the correct slopes we enforce
the correct Kähler class.

The slope integral in Eq. (4.7) is evaluated numerically using MC integration, that is, integrals of
the form (2.10) are computed using Eq. (2.26). Note that this integral requires a large batch size to
provide a good approximation to the slope, while the other losses benefit from gradient descent with
small mini-batches. Hence, we break each training epoch of the NN into two optimization steps
with two di↵erent batch sizes (we do use the same optimizer, to transfer some of the information,
like momentum, between the two batches). A small batch size (default is 64 points) is used for
all above contributions to the loss function while a large one (defaults to 10, 000 points or the

7
This is not essential for manifolds with h1,1

(X) = 1 (such as the quintic), since all Kähler classes are obtained by

simple metric rescaling. However, it is critical in order to generate metrics with a well-defined Kähler class for h1,1
(X) > 1.
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dinates u and v, respectively. Moreover, d is the number of patch transitions, and the default for
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their associated field strengths and µt(OX(e↵) their slopes for the given Kähler parameters t↵, as
computed from the topological formula, Eq. (2.8). For the norm, the default is n = 1. Conversely,
these slope values on the “line bundle basis”OX(e↵), ↵ = 1, . . . , h1,1(X), fix the Kähler parameters
uniquely and this is the basic idea behind Eq. (4.7): by enforcing the correct slopes we enforce
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The slope integral in Eq. (4.7) is evaluated numerically using MC integration, that is, integrals of
the form (2.10) are computed using Eq. (2.26). Note that this integral requires a large batch size to
provide a good approximation to the slope, while the other losses benefit from gradient descent with
small mini-batches. Hence, we break each training epoch of the NN into two optimization steps
with two di↵erent batch sizes (we do use the same optimizer, to transfer some of the information,
like momentum, between the two batches). A small batch size (default is 64 points) is used for
all above contributions to the loss function while a large one (defaults to 10, 000 points or the
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transition loss: 

• Kähler loss LdJ

The Kähler loss, defined by

LdJ =
X

ijk

||Re cijk||n + ||Im cijk||n , (4.5)

where cijk = gij̄,k � gkj̄,i and gij̄,k = @kgij̄ ensures that dJ = 0, so that the metric is Kähler. The
default for the Ln norm is n = 2.

• Transition loss Ltransition

The transition loss function ensures that gij̄ transforms as a complex tensor under coordinate
transformations. For the additive and multiplicative networks, this is implemented as
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where (TUV)⌫µ = @v
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/@u

µ are the transition matrices between patches U and V, with local coor-
dinates u and v, respectively. Moreover, d is the number of patch transitions, and the default for
the norm is n = 1.

• Kähler class loss LKclass

Finally, since we would like to compute the Ricci-flat metric for given Kähler parameters t↵, we
require a loss contribution which enforces the correct Kähler class7. It may appear this is not
necessary for the �-model — provided gFS is set up with the correct Kähler class, the addition
@@̄� is exact and, hence, does not change the class. While this is true mathematically, it depends
on � being a function (rather than a section), a condition which is di�cult to enforce on a NN.
For the other models in Table 1 there is no mathematical reason for the Kähler class to remain
unchanged. In order to fix the Kähler class we define the Kähler class loss function as
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Here, OX(e↵) are the line bundles specified by integers (e↵)� = �
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↵, FFS,↵ = �iJ↵/(2⇡) are

their associated field strengths and µt(OX(e↵) their slopes for the given Kähler parameters t↵, as
computed from the topological formula, Eq. (2.8). For the norm, the default is n = 1. Conversely,
these slope values on the “line bundle basis”OX(e↵), ↵ = 1, . . . , h1,1(X), fix the Kähler parameters
uniquely and this is the basic idea behind Eq. (4.7): by enforcing the correct slopes we enforce
the correct Kähler class.

The slope integral in Eq. (4.7) is evaluated numerically using MC integration, that is, integrals of
the form (2.10) are computed using Eq. (2.26). Note that this integral requires a large batch size to
provide a good approximation to the slope, while the other losses benefit from gradient descent with
small mini-batches. Hence, we break each training epoch of the NN into two optimization steps
with two di↵erent batch sizes (we do use the same optimizer, to transfer some of the information,
like momentum, between the two batches). A small batch size (default is 64 points) is used for
all above contributions to the loss function while a large one (defaults to 10, 000 points or the
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(X) = 1 (such as the quintic), since all Kähler classes are obtained by

simple metric rescaling. However, it is critical in order to generate metrics with a well-defined Kähler class for h1,1
(X) > 1.
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Ricci loss: 

than the ones in gCY, a NN dealing with a metric correction involves smaller numbers, likely leading
to enhanced numerical stability. As Table 1 shows, gpr may be defined additively, gpr = gFS + gNN, via
element-wise multiplication, gpr = gFS + gFS � gNN, or via matrix multiplication, gpr = gFS + gFS · gNN.
Finally, using the full information contained in Eq. (2.2), we may set gpr = gFS + @@̄�, where the NN
represents the real function �.

While we have already argued that the free NN is likely ine�cient, there is no telling which of the other
four Ansätze in Table 1 will be most e�cient in learning the Ricci-flat metric on a given CY manifold. For
example, while the �-model automatically gives a Kähler metric, it requires two additional derivatives
on the input, which come at a computational cost. For this reason, the cymetric package makes all
these options available for the user to explore. In the ensuing section, we will compare the performance
of the di↵erent NNs on the quintic.

In each experiment the NN is trained on input data which consists of a set {pi} of points on the CY
manifold. These points are generated using the method described in section 2.7. They are, by the
theorem of Shi↵man and Zelditch, distributed with respect to a measure dA, which is inherited from
the ambient space. This allows to compute any integrals used in the training and validation processes
as weighted sums, following Eqs. (2.25) and (2.26).

As discussed above, the learning of NNs is governed by the minimization of loss functions. A CY metric
must satisfy a number of mathematical constraints, listed in section 2. We encode these restrictions in
a custom loss function

L = ↵1LMA + ↵2LdJ + ↵3Ltransition + ↵4LRicci + ↵5LKclass (4.2)

where ↵i are hyperparameters of the NN with default value ↵i = 1.0, and the individual loss contribu-
tions are defined as follows:

• Monge-Ampère loss LMA

The Monge-Ampère loss is defined as

LMA =
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det gpr
⌦ ^ ⌦̄
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, (4.3)

and it ensures that the metric satisfies the Monge-Ampère equation (2.2), as required by the
Calabi–Yau theorem. This loss may be computed with any Ln norm, as indicated by the subscript
n (default is n = 1).5

• Ricci loss LRicci

The Ricci loss is defined by

LRicci = ||R||n =
����@@̄ ln det gpr

����
n
, (4.4)

and it ensures that the metric has vanishing Ricci scalar.6 This is a necessary condition for the
metric to satisfy the stronger CY requirement of having vanishing Ricci tensor. Again, this loss
function may be computed with di↵erent Ln norms, with default n = 1.

5
The choice of Ln norm will a↵ect the training of the network. A high n pushes the network to reduce outliers, that is,

large loss function contributions that are localized at a few points. With a low n, the NN will instead strive to reduce the

loss function of all points with equal weight. From our experiments, the default values chosen in cymetric lead to good

performance on the manifolds we have studied.

6
Recall that for Kähler metrics, the Ricci scalar simplifies to R = gij̄@i@̄j̄ log det(g).
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Kahler class loss: 

• Kähler loss LdJ

The Kähler loss, defined by

LdJ =
X

ijk

||Re cijk||n + ||Im cijk||n , (4.5)

where cijk = gij̄,k � gkj̄,i and gij̄,k = @kgij̄ ensures that dJ = 0, so that the metric is Kähler. The
default for the Ln norm is n = 2.

• Transition loss Ltransition

The transition loss function ensures that gij̄ transforms as a complex tensor under coordinate
transformations. For the additive and multiplicative networks, this is implemented as
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where (TUV)⌫µ = @v
⌫
/@u

µ are the transition matrices between patches U and V, with local coor-
dinates u and v, respectively. Moreover, d is the number of patch transitions, and the default for
the norm is n = 1.

• Kähler class loss LKclass

Finally, since we would like to compute the Ricci-flat metric for given Kähler parameters t↵, we
require a loss contribution which enforces the correct Kähler class7. It may appear this is not
necessary for the �-model — provided gFS is set up with the correct Kähler class, the addition
@@̄� is exact and, hence, does not change the class. While this is true mathematically, it depends
on � being a function (rather than a section), a condition which is di�cult to enforce on a NN.
For the other models in Table 1 there is no mathematical reason for the Kähler class to remain
unchanged. In order to fix the Kähler class we define the Kähler class loss function as

LKclass =
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Here, OX(e↵) are the line bundles specified by integers (e↵)� = �
�
↵, FFS,↵ = �iJ↵/(2⇡) are

their associated field strengths and µt(OX(e↵) their slopes for the given Kähler parameters t↵, as
computed from the topological formula, Eq. (2.8). For the norm, the default is n = 1. Conversely,
these slope values on the “line bundle basis”OX(e↵), ↵ = 1, . . . , h1,1(X), fix the Kähler parameters
uniquely and this is the basic idea behind Eq. (4.7): by enforcing the correct slopes we enforce
the correct Kähler class.

The slope integral in Eq. (4.7) is evaluated numerically using MC integration, that is, integrals of
the form (2.10) are computed using Eq. (2.26). Note that this integral requires a large batch size to
provide a good approximation to the slope, while the other losses benefit from gradient descent with
small mini-batches. Hence, we break each training epoch of the NN into two optimization steps
with two di↵erent batch sizes (we do use the same optimizer, to transfer some of the information,
like momentum, between the two batches). A small batch size (default is 64 points) is used for
all above contributions to the loss function while a large one (defaults to 10, 000 points or the

7
This is not essential for manifolds with h1,1

(X) = 1 (such as the quintic), since all Kähler classes are obtained by

simple metric rescaling. However, it is critical in order to generate metrics with a well-defined Kähler class for h1,1
(X) > 1.
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fixes Kahler class by matching to the

known slopes of line bundles



Loss function

than the ones in gCY, a NN dealing with a metric correction involves smaller numbers, likely leading
to enhanced numerical stability. As Table 1 shows, gpr may be defined additively, gpr = gFS + gNN, via
element-wise multiplication, gpr = gFS + gFS � gNN, or via matrix multiplication, gpr = gFS + gFS · gNN.
Finally, using the full information contained in Eq. (2.2), we may set gpr = gFS + @@̄�, where the NN
represents the real function �.

While we have already argued that the free NN is likely ine�cient, there is no telling which of the other
four Ansätze in Table 1 will be most e�cient in learning the Ricci-flat metric on a given CY manifold. For
example, while the �-model automatically gives a Kähler metric, it requires two additional derivatives
on the input, which come at a computational cost. For this reason, the cymetric package makes all
these options available for the user to explore. In the ensuing section, we will compare the performance
of the di↵erent NNs on the quintic.

In each experiment the NN is trained on input data which consists of a set {pi} of points on the CY
manifold. These points are generated using the method described in section 2.7. They are, by the
theorem of Shi↵man and Zelditch, distributed with respect to a measure dA, which is inherited from
the ambient space. This allows to compute any integrals used in the training and validation processes
as weighted sums, following Eqs. (2.25) and (2.26).

As discussed above, the learning of NNs is governed by the minimization of loss functions. A CY metric
must satisfy a number of mathematical constraints, listed in section 2. We encode these restrictions in
a custom loss function

L = ↵1LMA + ↵2LdJ + ↵3Ltransition + ↵4LRicci + ↵5LKclass (4.2)

where ↵i are hyperparameters of the NN with default value ↵i = 1.0, and the individual loss contribu-
tions are defined as follows:

• Monge-Ampère loss LMA

The Monge-Ampère loss is defined as

LMA =
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, (4.3)

and it ensures that the metric satisfies the Monge-Ampère equation (2.2), as required by the
Calabi–Yau theorem. This loss may be computed with any Ln norm, as indicated by the subscript
n (default is n = 1).5

• Ricci loss LRicci

The Ricci loss is defined by

LRicci = ||R||n =
����@@̄ ln det gpr

����
n
, (4.4)

and it ensures that the metric has vanishing Ricci scalar.6 This is a necessary condition for the
metric to satisfy the stronger CY requirement of having vanishing Ricci tensor. Again, this loss
function may be computed with di↵erent Ln norms, with default n = 1.

5
The choice of Ln norm will a↵ect the training of the network. A high n pushes the network to reduce outliers, that is,

large loss function contributions that are localized at a few points. With a low n, the NN will instead strive to reduce the

loss function of all points with equal weight. From our experiments, the default values chosen in cymetric lead to good

performance on the manifolds we have studied.

6
Recall that for Kähler metrics, the Ricci scalar simplifies to R = gij̄@i@̄j̄ log det(g).
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Finally, using the full information contained in Eq. (2.2), we may set gpr = gFS + @@̄�, where the NN
represents the real function �.

While we have already argued that the free NN is likely ine�cient, there is no telling which of the other
four Ansätze in Table 1 will be most e�cient in learning the Ricci-flat metric on a given CY manifold. For
example, while the �-model automatically gives a Kähler metric, it requires two additional derivatives
on the input, which come at a computational cost. For this reason, the cymetric package makes all
these options available for the user to explore. In the ensuing section, we will compare the performance
of the di↵erent NNs on the quintic.

In each experiment the NN is trained on input data which consists of a set {pi} of points on the CY
manifold. These points are generated using the method described in section 2.7. They are, by the
theorem of Shi↵man and Zelditch, distributed with respect to a measure dA, which is inherited from
the ambient space. This allows to compute any integrals used in the training and validation processes
as weighted sums, following Eqs. (2.25) and (2.26).

As discussed above, the learning of NNs is governed by the minimization of loss functions. A CY metric
must satisfy a number of mathematical constraints, listed in section 2. We encode these restrictions in
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and it ensures that the metric satisfies the Monge-Ampère equation (2.2), as required by the
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The Ricci loss is defined by
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and it ensures that the metric has vanishing Ricci scalar.6 This is a necessary condition for the
metric to satisfy the stronger CY requirement of having vanishing Ricci tensor. Again, this loss
function may be computed with di↵erent Ln norms, with default n = 1.
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Monge-Ampere loss: 

Kahler loss: 

• Kähler loss LdJ

The Kähler loss, defined by

LdJ =
X

ijk

||Re cijk||n + ||Im cijk||n , (4.5)

where cijk = gij̄,k � gkj̄,i and gij̄,k = @kgij̄ ensures that dJ = 0, so that the metric is Kähler. The
default for the Ln norm is n = 2.

• Transition loss Ltransition

The transition loss function ensures that gij̄ transforms as a complex tensor under coordinate
transformations. For the additive and multiplicative networks, this is implemented as
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where (TUV)⌫µ = @v
⌫
/@u

µ are the transition matrices between patches U and V, with local coor-
dinates u and v, respectively. Moreover, d is the number of patch transitions, and the default for
the norm is n = 1.

• Kähler class loss LKclass

Finally, since we would like to compute the Ricci-flat metric for given Kähler parameters t↵, we
require a loss contribution which enforces the correct Kähler class7. It may appear this is not
necessary for the �-model — provided gFS is set up with the correct Kähler class, the addition
@@̄� is exact and, hence, does not change the class. While this is true mathematically, it depends
on � being a function (rather than a section), a condition which is di�cult to enforce on a NN.
For the other models in Table 1 there is no mathematical reason for the Kähler class to remain
unchanged. In order to fix the Kähler class we define the Kähler class loss function as
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Here, OX(e↵) are the line bundles specified by integers (e↵)� = �
�
↵, FFS,↵ = �iJ↵/(2⇡) are

their associated field strengths and µt(OX(e↵) their slopes for the given Kähler parameters t↵, as
computed from the topological formula, Eq. (2.8). For the norm, the default is n = 1. Conversely,
these slope values on the “line bundle basis”OX(e↵), ↵ = 1, . . . , h1,1(X), fix the Kähler parameters
uniquely and this is the basic idea behind Eq. (4.7): by enforcing the correct slopes we enforce
the correct Kähler class.

The slope integral in Eq. (4.7) is evaluated numerically using MC integration, that is, integrals of
the form (2.10) are computed using Eq. (2.26). Note that this integral requires a large batch size to
provide a good approximation to the slope, while the other losses benefit from gradient descent with
small mini-batches. Hence, we break each training epoch of the NN into two optimization steps
with two di↵erent batch sizes (we do use the same optimizer, to transfer some of the information,
like momentum, between the two batches). A small batch size (default is 64 points) is used for
all above contributions to the loss function while a large one (defaults to 10, 000 points or the
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• Kähler loss LdJ

The Kähler loss, defined by

LdJ =
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where cijk = gij̄,k � gkj̄,i and gij̄,k = @kgij̄ ensures that dJ = 0, so that the metric is Kähler. The
default for the Ln norm is n = 2.
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where (TUV)⌫µ = @v
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/@u

µ are the transition matrices between patches U and V, with local coor-
dinates u and v, respectively. Moreover, d is the number of patch transitions, and the default for
the norm is n = 1.

• Kähler class loss LKclass

Finally, since we would like to compute the Ricci-flat metric for given Kähler parameters t↵, we
require a loss contribution which enforces the correct Kähler class7. It may appear this is not
necessary for the �-model — provided gFS is set up with the correct Kähler class, the addition
@@̄� is exact and, hence, does not change the class. While this is true mathematically, it depends
on � being a function (rather than a section), a condition which is di�cult to enforce on a NN.
For the other models in Table 1 there is no mathematical reason for the Kähler class to remain
unchanged. In order to fix the Kähler class we define the Kähler class loss function as
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Here, OX(e↵) are the line bundles specified by integers (e↵)� = �
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these slope values on the “line bundle basis”OX(e↵), ↵ = 1, . . . , h1,1(X), fix the Kähler parameters
uniquely and this is the basic idea behind Eq. (4.7): by enforcing the correct slopes we enforce
the correct Kähler class.

The slope integral in Eq. (4.7) is evaluated numerically using MC integration, that is, integrals of
the form (2.10) are computed using Eq. (2.26). Note that this integral requires a large batch size to
provide a good approximation to the slope, while the other losses benefit from gradient descent with
small mini-batches. Hence, we break each training epoch of the NN into two optimization steps
with two di↵erent batch sizes (we do use the same optimizer, to transfer some of the information,
like momentum, between the two batches). A small batch size (default is 64 points) is used for
all above contributions to the loss function while a large one (defaults to 10, 000 points or the
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µ are the transition matrices between patches U and V, with local coor-
dinates u and v, respectively. Moreover, d is the number of patch transitions, and the default for
the norm is n = 1.

• Kähler class loss LKclass

Finally, since we would like to compute the Ricci-flat metric for given Kähler parameters t↵, we
require a loss contribution which enforces the correct Kähler class7. It may appear this is not
necessary for the �-model — provided gFS is set up with the correct Kähler class, the addition
@@̄� is exact and, hence, does not change the class. While this is true mathematically, it depends
on � being a function (rather than a section), a condition which is di�cult to enforce on a NN.
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computed from the topological formula, Eq. (2.8). For the norm, the default is n = 1. Conversely,
these slope values on the “line bundle basis”OX(e↵), ↵ = 1, . . . , h1,1(X), fix the Kähler parameters
uniquely and this is the basic idea behind Eq. (4.7): by enforcing the correct slopes we enforce
the correct Kähler class.

The slope integral in Eq. (4.7) is evaluated numerically using MC integration, that is, integrals of
the form (2.10) are computed using Eq. (2.26). Note that this integral requires a large batch size to
provide a good approximation to the slope, while the other losses benefit from gradient descent with
small mini-batches. Hence, we break each training epoch of the NN into two optimization steps
with two di↵erent batch sizes (we do use the same optimizer, to transfer some of the information,
like momentum, between the two batches). A small batch size (default is 64 points) is used for
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Ricci loss: 

than the ones in gCY, a NN dealing with a metric correction involves smaller numbers, likely leading
to enhanced numerical stability. As Table 1 shows, gpr may be defined additively, gpr = gFS + gNN, via
element-wise multiplication, gpr = gFS + gFS � gNN, or via matrix multiplication, gpr = gFS + gFS · gNN.
Finally, using the full information contained in Eq. (2.2), we may set gpr = gFS + @@̄�, where the NN
represents the real function �.

While we have already argued that the free NN is likely ine�cient, there is no telling which of the other
four Ansätze in Table 1 will be most e�cient in learning the Ricci-flat metric on a given CY manifold. For
example, while the �-model automatically gives a Kähler metric, it requires two additional derivatives
on the input, which come at a computational cost. For this reason, the cymetric package makes all
these options available for the user to explore. In the ensuing section, we will compare the performance
of the di↵erent NNs on the quintic.

In each experiment the NN is trained on input data which consists of a set {pi} of points on the CY
manifold. These points are generated using the method described in section 2.7. They are, by the
theorem of Shi↵man and Zelditch, distributed with respect to a measure dA, which is inherited from
the ambient space. This allows to compute any integrals used in the training and validation processes
as weighted sums, following Eqs. (2.25) and (2.26).

As discussed above, the learning of NNs is governed by the minimization of loss functions. A CY metric
must satisfy a number of mathematical constraints, listed in section 2. We encode these restrictions in
a custom loss function

L = ↵1LMA + ↵2LdJ + ↵3Ltransition + ↵4LRicci + ↵5LKclass (4.2)

where ↵i are hyperparameters of the NN with default value ↵i = 1.0, and the individual loss contribu-
tions are defined as follows:

• Monge-Ampère loss LMA

The Monge-Ampère loss is defined as

LMA =
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, (4.3)

and it ensures that the metric satisfies the Monge-Ampère equation (2.2), as required by the
Calabi–Yau theorem. This loss may be computed with any Ln norm, as indicated by the subscript
n (default is n = 1).5

• Ricci loss LRicci

The Ricci loss is defined by

LRicci = ||R||n =
����@@̄ ln det gpr

����
n
, (4.4)

and it ensures that the metric has vanishing Ricci scalar.6 This is a necessary condition for the
metric to satisfy the stronger CY requirement of having vanishing Ricci tensor. Again, this loss
function may be computed with di↵erent Ln norms, with default n = 1.

5
The choice of Ln norm will a↵ect the training of the network. A high n pushes the network to reduce outliers, that is,

large loss function contributions that are localized at a few points. With a low n, the NN will instead strive to reduce the

loss function of all points with equal weight. From our experiments, the default values chosen in cymetric lead to good

performance on the manifolds we have studied.

6
Recall that for Kähler metrics, the Ricci scalar simplifies to R = gij̄@i@̄j̄ log det(g).
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Kahler class loss: 

• Kähler loss LdJ

The Kähler loss, defined by

LdJ =
X

ijk

||Re cijk||n + ||Im cijk||n , (4.5)

where cijk = gij̄,k � gkj̄,i and gij̄,k = @kgij̄ ensures that dJ = 0, so that the metric is Kähler. The
default for the Ln norm is n = 2.

• Transition loss Ltransition

The transition loss function ensures that gij̄ transforms as a complex tensor under coordinate
transformations. For the additive and multiplicative networks, this is implemented as
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where (TUV)⌫µ = @v
⌫
/@u

µ are the transition matrices between patches U and V, with local coor-
dinates u and v, respectively. Moreover, d is the number of patch transitions, and the default for
the norm is n = 1.

• Kähler class loss LKclass

Finally, since we would like to compute the Ricci-flat metric for given Kähler parameters t↵, we
require a loss contribution which enforces the correct Kähler class7. It may appear this is not
necessary for the �-model — provided gFS is set up with the correct Kähler class, the addition
@@̄� is exact and, hence, does not change the class. While this is true mathematically, it depends
on � being a function (rather than a section), a condition which is di�cult to enforce on a NN.
For the other models in Table 1 there is no mathematical reason for the Kähler class to remain
unchanged. In order to fix the Kähler class we define the Kähler class loss function as
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Here, OX(e↵) are the line bundles specified by integers (e↵)� = �
�
↵, FFS,↵ = �iJ↵/(2⇡) are

their associated field strengths and µt(OX(e↵) their slopes for the given Kähler parameters t↵, as
computed from the topological formula, Eq. (2.8). For the norm, the default is n = 1. Conversely,
these slope values on the “line bundle basis”OX(e↵), ↵ = 1, . . . , h1,1(X), fix the Kähler parameters
uniquely and this is the basic idea behind Eq. (4.7): by enforcing the correct slopes we enforce
the correct Kähler class.

The slope integral in Eq. (4.7) is evaluated numerically using MC integration, that is, integrals of
the form (2.10) are computed using Eq. (2.26). Note that this integral requires a large batch size to
provide a good approximation to the slope, while the other losses benefit from gradient descent with
small mini-batches. Hence, we break each training epoch of the NN into two optimization steps
with two di↵erent batch sizes (we do use the same optimizer, to transfer some of the information,
like momentum, between the two batches). A small batch size (default is 64 points) is used for
all above contributions to the loss function while a large one (defaults to 10, 000 points or the
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than the ones in gCY, a NN dealing with a metric correction involves smaller numbers, likely leading
to enhanced numerical stability. As Table 1 shows, gpr may be defined additively, gpr = gFS + gNN, via
element-wise multiplication, gpr = gFS + gFS � gNN, or via matrix multiplication, gpr = gFS + gFS · gNN.
Finally, using the full information contained in Eq. (2.2), we may set gpr = gFS + @@̄�, where the NN
represents the real function �.

While we have already argued that the free NN is likely ine�cient, there is no telling which of the other
four Ansätze in Table 1 will be most e�cient in learning the Ricci-flat metric on a given CY manifold. For
example, while the �-model automatically gives a Kähler metric, it requires two additional derivatives
on the input, which come at a computational cost. For this reason, the cymetric package makes all
these options available for the user to explore. In the ensuing section, we will compare the performance
of the di↵erent NNs on the quintic.

In each experiment the NN is trained on input data which consists of a set {pi} of points on the CY
manifold. These points are generated using the method described in section 2.7. They are, by the
theorem of Shi↵man and Zelditch, distributed with respect to a measure dA, which is inherited from
the ambient space. This allows to compute any integrals used in the training and validation processes
as weighted sums, following Eqs. (2.25) and (2.26).

As discussed above, the learning of NNs is governed by the minimization of loss functions. A CY metric
must satisfy a number of mathematical constraints, listed in section 2. We encode these restrictions in
a custom loss function

L = ↵1LMA + ↵2LdJ + ↵3Ltransition + ↵4LRicci + ↵5LKclass (4.2)

where ↵i are hyperparameters of the NN with default value ↵i = 1.0, and the individual loss contribu-
tions are defined as follows:

• Monge-Ampère loss LMA

The Monge-Ampère loss is defined as

LMA =
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and it ensures that the metric satisfies the Monge-Ampère equation (2.2), as required by the
Calabi–Yau theorem. This loss may be computed with any Ln norm, as indicated by the subscript
n (default is n = 1).5

• Ricci loss LRicci

The Ricci loss is defined by

LRicci = ||R||n =
����@@̄ ln det gpr
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n
, (4.4)

and it ensures that the metric has vanishing Ricci scalar.6 This is a necessary condition for the
metric to satisfy the stronger CY requirement of having vanishing Ricci tensor. Again, this loss
function may be computed with di↵erent Ln norms, with default n = 1.

5
The choice of Ln norm will a↵ect the training of the network. A high n pushes the network to reduce outliers, that is,

large loss function contributions that are localized at a few points. With a low n, the NN will instead strive to reduce the

loss function of all points with equal weight. From our experiments, the default values chosen in cymetric lead to good

performance on the manifolds we have studied.
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and it ensures that the metric satisfies the Monge-Ampère equation (2.2), as required by the
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n (default is n = 1).5
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The Ricci loss is defined by
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and it ensures that the metric has vanishing Ricci scalar.6 This is a necessary condition for the
metric to satisfy the stronger CY requirement of having vanishing Ricci tensor. Again, this loss
function may be computed with di↵erent Ln norms, with default n = 1.

5
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Monge-Ampere loss: 

Kahler loss: 

• Kähler loss LdJ

The Kähler loss, defined by

LdJ =
X

ijk

||Re cijk||n + ||Im cijk||n , (4.5)

where cijk = gij̄,k � gkj̄,i and gij̄,k = @kgij̄ ensures that dJ = 0, so that the metric is Kähler. The
default for the Ln norm is n = 2.

• Transition loss Ltransition

The transition loss function ensures that gij̄ transforms as a complex tensor under coordinate
transformations. For the additive and multiplicative networks, this is implemented as
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, (4.6)

where (TUV)⌫µ = @v
⌫
/@u

µ are the transition matrices between patches U and V, with local coor-
dinates u and v, respectively. Moreover, d is the number of patch transitions, and the default for
the norm is n = 1.

• Kähler class loss LKclass

Finally, since we would like to compute the Ricci-flat metric for given Kähler parameters t↵, we
require a loss contribution which enforces the correct Kähler class7. It may appear this is not
necessary for the �-model — provided gFS is set up with the correct Kähler class, the addition
@@̄� is exact and, hence, does not change the class. While this is true mathematically, it depends
on � being a function (rather than a section), a condition which is di�cult to enforce on a NN.
For the other models in Table 1 there is no mathematical reason for the Kähler class to remain
unchanged. In order to fix the Kähler class we define the Kähler class loss function as

LKclass =
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Here, OX(e↵) are the line bundles specified by integers (e↵)� = �
�
↵, FFS,↵ = �iJ↵/(2⇡) are

their associated field strengths and µt(OX(e↵) their slopes for the given Kähler parameters t↵, as
computed from the topological formula, Eq. (2.8). For the norm, the default is n = 1. Conversely,
these slope values on the “line bundle basis”OX(e↵), ↵ = 1, . . . , h1,1(X), fix the Kähler parameters
uniquely and this is the basic idea behind Eq. (4.7): by enforcing the correct slopes we enforce
the correct Kähler class.

The slope integral in Eq. (4.7) is evaluated numerically using MC integration, that is, integrals of
the form (2.10) are computed using Eq. (2.26). Note that this integral requires a large batch size to
provide a good approximation to the slope, while the other losses benefit from gradient descent with
small mini-batches. Hence, we break each training epoch of the NN into two optimization steps
with two di↵erent batch sizes (we do use the same optimizer, to transfer some of the information,
like momentum, between the two batches). A small batch size (default is 64 points) is used for
all above contributions to the loss function while a large one (defaults to 10, 000 points or the

7
This is not essential for manifolds with h1,1

(X) = 1 (such as the quintic), since all Kähler classes are obtained by

simple metric rescaling. However, it is critical in order to generate metrics with a well-defined Kähler class for h1,1
(X) > 1.
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• Kähler loss LdJ

The Kähler loss, defined by
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where cijk = gij̄,k � gkj̄,i and gij̄,k = @kgij̄ ensures that dJ = 0, so that the metric is Kähler. The
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µ are the transition matrices between patches U and V, with local coor-
dinates u and v, respectively. Moreover, d is the number of patch transitions, and the default for
the norm is n = 1.

• Kähler class loss LKclass

Finally, since we would like to compute the Ricci-flat metric for given Kähler parameters t↵, we
require a loss contribution which enforces the correct Kähler class7. It may appear this is not
necessary for the �-model — provided gFS is set up with the correct Kähler class, the addition
@@̄� is exact and, hence, does not change the class. While this is true mathematically, it depends
on � being a function (rather than a section), a condition which is di�cult to enforce on a NN.
For the other models in Table 1 there is no mathematical reason for the Kähler class to remain
unchanged. In order to fix the Kähler class we define the Kähler class loss function as
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Here, OX(e↵) are the line bundles specified by integers (e↵)� = �
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↵, FFS,↵ = �iJ↵/(2⇡) are

their associated field strengths and µt(OX(e↵) their slopes for the given Kähler parameters t↵, as
computed from the topological formula, Eq. (2.8). For the norm, the default is n = 1. Conversely,
these slope values on the “line bundle basis”OX(e↵), ↵ = 1, . . . , h1,1(X), fix the Kähler parameters
uniquely and this is the basic idea behind Eq. (4.7): by enforcing the correct slopes we enforce
the correct Kähler class.

The slope integral in Eq. (4.7) is evaluated numerically using MC integration, that is, integrals of
the form (2.10) are computed using Eq. (2.26). Note that this integral requires a large batch size to
provide a good approximation to the slope, while the other losses benefit from gradient descent with
small mini-batches. Hence, we break each training epoch of the NN into two optimization steps
with two di↵erent batch sizes (we do use the same optimizer, to transfer some of the information,
like momentum, between the two batches). A small batch size (default is 64 points) is used for
all above contributions to the loss function while a large one (defaults to 10, 000 points or the
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transition loss: 

• Kähler loss LdJ

The Kähler loss, defined by

LdJ =
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||Re cijk||n + ||Im cijk||n , (4.5)

where cijk = gij̄,k � gkj̄,i and gij̄,k = @kgij̄ ensures that dJ = 0, so that the metric is Kähler. The
default for the Ln norm is n = 2.

• Transition loss Ltransition

The transition loss function ensures that gij̄ transforms as a complex tensor under coordinate
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where (TUV)⌫µ = @v
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µ are the transition matrices between patches U and V, with local coor-
dinates u and v, respectively. Moreover, d is the number of patch transitions, and the default for
the norm is n = 1.

• Kähler class loss LKclass

Finally, since we would like to compute the Ricci-flat metric for given Kähler parameters t↵, we
require a loss contribution which enforces the correct Kähler class7. It may appear this is not
necessary for the �-model — provided gFS is set up with the correct Kähler class, the addition
@@̄� is exact and, hence, does not change the class. While this is true mathematically, it depends
on � being a function (rather than a section), a condition which is di�cult to enforce on a NN.
For the other models in Table 1 there is no mathematical reason for the Kähler class to remain
unchanged. In order to fix the Kähler class we define the Kähler class loss function as
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Here, OX(e↵) are the line bundles specified by integers (e↵)� = �
�
↵, FFS,↵ = �iJ↵/(2⇡) are

their associated field strengths and µt(OX(e↵) their slopes for the given Kähler parameters t↵, as
computed from the topological formula, Eq. (2.8). For the norm, the default is n = 1. Conversely,
these slope values on the “line bundle basis”OX(e↵), ↵ = 1, . . . , h1,1(X), fix the Kähler parameters
uniquely and this is the basic idea behind Eq. (4.7): by enforcing the correct slopes we enforce
the correct Kähler class.

The slope integral in Eq. (4.7) is evaluated numerically using MC integration, that is, integrals of
the form (2.10) are computed using Eq. (2.26). Note that this integral requires a large batch size to
provide a good approximation to the slope, while the other losses benefit from gradient descent with
small mini-batches. Hence, we break each training epoch of the NN into two optimization steps
with two di↵erent batch sizes (we do use the same optimizer, to transfer some of the information,
like momentum, between the two batches). A small batch size (default is 64 points) is used for
all above contributions to the loss function while a large one (defaults to 10, 000 points or the

7
This is not essential for manifolds with h1,1

(X) = 1 (such as the quintic), since all Kähler classes are obtained by

simple metric rescaling. However, it is critical in order to generate metrics with a well-defined Kähler class for h1,1
(X) > 1.
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Ricci loss: 

than the ones in gCY, a NN dealing with a metric correction involves smaller numbers, likely leading
to enhanced numerical stability. As Table 1 shows, gpr may be defined additively, gpr = gFS + gNN, via
element-wise multiplication, gpr = gFS + gFS � gNN, or via matrix multiplication, gpr = gFS + gFS · gNN.
Finally, using the full information contained in Eq. (2.2), we may set gpr = gFS + @@̄�, where the NN
represents the real function �.

While we have already argued that the free NN is likely ine�cient, there is no telling which of the other
four Ansätze in Table 1 will be most e�cient in learning the Ricci-flat metric on a given CY manifold. For
example, while the �-model automatically gives a Kähler metric, it requires two additional derivatives
on the input, which come at a computational cost. For this reason, the cymetric package makes all
these options available for the user to explore. In the ensuing section, we will compare the performance
of the di↵erent NNs on the quintic.

In each experiment the NN is trained on input data which consists of a set {pi} of points on the CY
manifold. These points are generated using the method described in section 2.7. They are, by the
theorem of Shi↵man and Zelditch, distributed with respect to a measure dA, which is inherited from
the ambient space. This allows to compute any integrals used in the training and validation processes
as weighted sums, following Eqs. (2.25) and (2.26).

As discussed above, the learning of NNs is governed by the minimization of loss functions. A CY metric
must satisfy a number of mathematical constraints, listed in section 2. We encode these restrictions in
a custom loss function

L = ↵1LMA + ↵2LdJ + ↵3Ltransition + ↵4LRicci + ↵5LKclass (4.2)

where ↵i are hyperparameters of the NN with default value ↵i = 1.0, and the individual loss contribu-
tions are defined as follows:

• Monge-Ampère loss LMA

The Monge-Ampère loss is defined as

LMA =
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and it ensures that the metric satisfies the Monge-Ampère equation (2.2), as required by the
Calabi–Yau theorem. This loss may be computed with any Ln norm, as indicated by the subscript
n (default is n = 1).5

• Ricci loss LRicci

The Ricci loss is defined by

LRicci = ||R||n =
����@@̄ ln det gpr

����
n
, (4.4)

and it ensures that the metric has vanishing Ricci scalar.6 This is a necessary condition for the
metric to satisfy the stronger CY requirement of having vanishing Ricci tensor. Again, this loss
function may be computed with di↵erent Ln norms, with default n = 1.

5
The choice of Ln norm will a↵ect the training of the network. A high n pushes the network to reduce outliers, that is,

large loss function contributions that are localized at a few points. With a low n, the NN will instead strive to reduce the

loss function of all points with equal weight. From our experiments, the default values chosen in cymetric lead to good

performance on the manifolds we have studied.

6
Recall that for Kähler metrics, the Ricci scalar simplifies to R = gij̄@i@̄j̄ log det(g).
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Kahler class loss: 

• Kähler loss LdJ

The Kähler loss, defined by

LdJ =
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||Re cijk||n + ||Im cijk||n , (4.5)

where cijk = gij̄,k � gkj̄,i and gij̄,k = @kgij̄ ensures that dJ = 0, so that the metric is Kähler. The
default for the Ln norm is n = 2.

• Transition loss Ltransition

The transition loss function ensures that gij̄ transforms as a complex tensor under coordinate
transformations. For the additive and multiplicative networks, this is implemented as
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µ are the transition matrices between patches U and V, with local coor-
dinates u and v, respectively. Moreover, d is the number of patch transitions, and the default for
the norm is n = 1.

• Kähler class loss LKclass

Finally, since we would like to compute the Ricci-flat metric for given Kähler parameters t↵, we
require a loss contribution which enforces the correct Kähler class7. It may appear this is not
necessary for the �-model — provided gFS is set up with the correct Kähler class, the addition
@@̄� is exact and, hence, does not change the class. While this is true mathematically, it depends
on � being a function (rather than a section), a condition which is di�cult to enforce on a NN.
For the other models in Table 1 there is no mathematical reason for the Kähler class to remain
unchanged. In order to fix the Kähler class we define the Kähler class loss function as
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Here, OX(e↵) are the line bundles specified by integers (e↵)� = �
�
↵, FFS,↵ = �iJ↵/(2⇡) are

their associated field strengths and µt(OX(e↵) their slopes for the given Kähler parameters t↵, as
computed from the topological formula, Eq. (2.8). For the norm, the default is n = 1. Conversely,
these slope values on the “line bundle basis”OX(e↵), ↵ = 1, . . . , h1,1(X), fix the Kähler parameters
uniquely and this is the basic idea behind Eq. (4.7): by enforcing the correct slopes we enforce
the correct Kähler class.

The slope integral in Eq. (4.7) is evaluated numerically using MC integration, that is, integrals of
the form (2.10) are computed using Eq. (2.26). Note that this integral requires a large batch size to
provide a good approximation to the slope, while the other losses benefit from gradient descent with
small mini-batches. Hence, we break each training epoch of the NN into two optimization steps
with two di↵erent batch sizes (we do use the same optimizer, to transfer some of the information,
like momentum, between the two batches). A small batch size (default is 64 points) is used for
all above contributions to the loss function while a large one (defaults to 10, 000 points or the
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than the ones in gCY, a NN dealing with a metric correction involves smaller numbers, likely leading
to enhanced numerical stability. As Table 1 shows, gpr may be defined additively, gpr = gFS + gNN, via
element-wise multiplication, gpr = gFS + gFS � gNN, or via matrix multiplication, gpr = gFS + gFS · gNN.
Finally, using the full information contained in Eq. (2.2), we may set gpr = gFS + @@̄�, where the NN
represents the real function �.

While we have already argued that the free NN is likely ine�cient, there is no telling which of the other
four Ansätze in Table 1 will be most e�cient in learning the Ricci-flat metric on a given CY manifold. For
example, while the �-model automatically gives a Kähler metric, it requires two additional derivatives
on the input, which come at a computational cost. For this reason, the cymetric package makes all
these options available for the user to explore. In the ensuing section, we will compare the performance
of the di↵erent NNs on the quintic.

In each experiment the NN is trained on input data which consists of a set {pi} of points on the CY
manifold. These points are generated using the method described in section 2.7. They are, by the
theorem of Shi↵man and Zelditch, distributed with respect to a measure dA, which is inherited from
the ambient space. This allows to compute any integrals used in the training and validation processes
as weighted sums, following Eqs. (2.25) and (2.26).

As discussed above, the learning of NNs is governed by the minimization of loss functions. A CY metric
must satisfy a number of mathematical constraints, listed in section 2. We encode these restrictions in
a custom loss function

L = ↵1LMA + ↵2LdJ + ↵3Ltransition + ↵4LRicci + ↵5LKclass (4.2)

where ↵i are hyperparameters of the NN with default value ↵i = 1.0, and the individual loss contribu-
tions are defined as follows:

• Monge-Ampère loss LMA

The Monge-Ampère loss is defined as

LMA =
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and it ensures that the metric satisfies the Monge-Ampère equation (2.2), as required by the
Calabi–Yau theorem. This loss may be computed with any Ln norm, as indicated by the subscript
n (default is n = 1).5

• Ricci loss LRicci

The Ricci loss is defined by

LRicci = ||R||n =
����@@̄ ln det gpr

����
n
, (4.4)

and it ensures that the metric has vanishing Ricci scalar.6 This is a necessary condition for the
metric to satisfy the stronger CY requirement of having vanishing Ricci tensor. Again, this loss
function may be computed with di↵erent Ln norms, with default n = 1.

5
The choice of Ln norm will a↵ect the training of the network. A high n pushes the network to reduce outliers, that is,

large loss function contributions that are localized at a few points. With a low n, the NN will instead strive to reduce the

loss function of all points with equal weight. From our experiments, the default values chosen in cymetric lead to good

performance on the manifolds we have studied.

6
Recall that for Kähler metrics, the Ricci scalar simplifies to R = gij̄@i@̄j̄ log det(g).
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theorem of Shi↵man and Zelditch, distributed with respect to a measure dA, which is inherited from
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as weighted sums, following Eqs. (2.25) and (2.26).

As discussed above, the learning of NNs is governed by the minimization of loss functions. A CY metric
must satisfy a number of mathematical constraints, listed in section 2. We encode these restrictions in
a custom loss function
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tions are defined as follows:
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and it ensures that the metric satisfies the Monge-Ampère equation (2.2), as required by the
Calabi–Yau theorem. This loss may be computed with any Ln norm, as indicated by the subscript
n (default is n = 1).5

• Ricci loss LRicci

The Ricci loss is defined by

LRicci = ||R||n =
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and it ensures that the metric has vanishing Ricci scalar.6 This is a necessary condition for the
metric to satisfy the stronger CY requirement of having vanishing Ricci tensor. Again, this loss
function may be computed with di↵erent Ln norms, with default n = 1.

5
The choice of Ln norm will a↵ect the training of the network. A high n pushes the network to reduce outliers, that is,

large loss function contributions that are localized at a few points. With a low n, the NN will instead strive to reduce the
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Monge-Ampere loss: 

Kahler loss: 

• Kähler loss LdJ

The Kähler loss, defined by

LdJ =
X

ijk

||Re cijk||n + ||Im cijk||n , (4.5)

where cijk = gij̄,k � gkj̄,i and gij̄,k = @kgij̄ ensures that dJ = 0, so that the metric is Kähler. The
default for the Ln norm is n = 2.

• Transition loss Ltransition

The transition loss function ensures that gij̄ transforms as a complex tensor under coordinate
transformations. For the additive and multiplicative networks, this is implemented as

Ltransition =
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where (TUV)⌫µ = @v
⌫
/@u

µ are the transition matrices between patches U and V, with local coor-
dinates u and v, respectively. Moreover, d is the number of patch transitions, and the default for
the norm is n = 1.

• Kähler class loss LKclass

Finally, since we would like to compute the Ricci-flat metric for given Kähler parameters t↵, we
require a loss contribution which enforces the correct Kähler class7. It may appear this is not
necessary for the �-model — provided gFS is set up with the correct Kähler class, the addition
@@̄� is exact and, hence, does not change the class. While this is true mathematically, it depends
on � being a function (rather than a section), a condition which is di�cult to enforce on a NN.
For the other models in Table 1 there is no mathematical reason for the Kähler class to remain
unchanged. In order to fix the Kähler class we define the Kähler class loss function as
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Here, OX(e↵) are the line bundles specified by integers (e↵)� = �
�
↵, FFS,↵ = �iJ↵/(2⇡) are

their associated field strengths and µt(OX(e↵) their slopes for the given Kähler parameters t↵, as
computed from the topological formula, Eq. (2.8). For the norm, the default is n = 1. Conversely,
these slope values on the “line bundle basis”OX(e↵), ↵ = 1, . . . , h1,1(X), fix the Kähler parameters
uniquely and this is the basic idea behind Eq. (4.7): by enforcing the correct slopes we enforce
the correct Kähler class.

The slope integral in Eq. (4.7) is evaluated numerically using MC integration, that is, integrals of
the form (2.10) are computed using Eq. (2.26). Note that this integral requires a large batch size to
provide a good approximation to the slope, while the other losses benefit from gradient descent with
small mini-batches. Hence, we break each training epoch of the NN into two optimization steps
with two di↵erent batch sizes (we do use the same optimizer, to transfer some of the information,
like momentum, between the two batches). A small batch size (default is 64 points) is used for
all above contributions to the loss function while a large one (defaults to 10, 000 points or the

7
This is not essential for manifolds with h1,1

(X) = 1 (such as the quintic), since all Kähler classes are obtained by

simple metric rescaling. However, it is critical in order to generate metrics with a well-defined Kähler class for h1,1
(X) > 1.
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• Kähler loss LdJ

The Kähler loss, defined by

LdJ =
X

ijk

||Re cijk||n + ||Im cijk||n , (4.5)

where cijk = gij̄,k � gkj̄,i and gij̄,k = @kgij̄ ensures that dJ = 0, so that the metric is Kähler. The
default for the Ln norm is n = 2.

• Transition loss Ltransition

The transition loss function ensures that gij̄ transforms as a complex tensor under coordinate
transformations. For the additive and multiplicative networks, this is implemented as

Ltransition =
1

d

X

U ,V

���
���gVpr � TUV · g

U
pr · (TUV)

†
���
���
n

, (4.6)

where (TUV)⌫µ = @v
⌫
/@u

µ are the transition matrices between patches U and V, with local coor-
dinates u and v, respectively. Moreover, d is the number of patch transitions, and the default for
the norm is n = 1.

• Kähler class loss LKclass

Finally, since we would like to compute the Ricci-flat metric for given Kähler parameters t↵, we
require a loss contribution which enforces the correct Kähler class7. It may appear this is not
necessary for the �-model — provided gFS is set up with the correct Kähler class, the addition
@@̄� is exact and, hence, does not change the class. While this is true mathematically, it depends
on � being a function (rather than a section), a condition which is di�cult to enforce on a NN.
For the other models in Table 1 there is no mathematical reason for the Kähler class to remain
unchanged. In order to fix the Kähler class we define the Kähler class loss function as
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Here, OX(e↵) are the line bundles specified by integers (e↵)� = �
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↵, FFS,↵ = �iJ↵/(2⇡) are

their associated field strengths and µt(OX(e↵) their slopes for the given Kähler parameters t↵, as
computed from the topological formula, Eq. (2.8). For the norm, the default is n = 1. Conversely,
these slope values on the “line bundle basis”OX(e↵), ↵ = 1, . . . , h1,1(X), fix the Kähler parameters
uniquely and this is the basic idea behind Eq. (4.7): by enforcing the correct slopes we enforce
the correct Kähler class.

The slope integral in Eq. (4.7) is evaluated numerically using MC integration, that is, integrals of
the form (2.10) are computed using Eq. (2.26). Note that this integral requires a large batch size to
provide a good approximation to the slope, while the other losses benefit from gradient descent with
small mini-batches. Hence, we break each training epoch of the NN into two optimization steps
with two di↵erent batch sizes (we do use the same optimizer, to transfer some of the information,
like momentum, between the two batches). A small batch size (default is 64 points) is used for
all above contributions to the loss function while a large one (defaults to 10, 000 points or the
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transition loss: 

• Kähler loss LdJ

The Kähler loss, defined by

LdJ =
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||Re cijk||n + ||Im cijk||n , (4.5)

where cijk = gij̄,k � gkj̄,i and gij̄,k = @kgij̄ ensures that dJ = 0, so that the metric is Kähler. The
default for the Ln norm is n = 2.

• Transition loss Ltransition

The transition loss function ensures that gij̄ transforms as a complex tensor under coordinate
transformations. For the additive and multiplicative networks, this is implemented as
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where (TUV)⌫µ = @v
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µ are the transition matrices between patches U and V, with local coor-
dinates u and v, respectively. Moreover, d is the number of patch transitions, and the default for
the norm is n = 1.

• Kähler class loss LKclass

Finally, since we would like to compute the Ricci-flat metric for given Kähler parameters t↵, we
require a loss contribution which enforces the correct Kähler class7. It may appear this is not
necessary for the �-model — provided gFS is set up with the correct Kähler class, the addition
@@̄� is exact and, hence, does not change the class. While this is true mathematically, it depends
on � being a function (rather than a section), a condition which is di�cult to enforce on a NN.
For the other models in Table 1 there is no mathematical reason for the Kähler class to remain
unchanged. In order to fix the Kähler class we define the Kähler class loss function as
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Here, OX(e↵) are the line bundles specified by integers (e↵)� = �
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↵, FFS,↵ = �iJ↵/(2⇡) are

their associated field strengths and µt(OX(e↵) their slopes for the given Kähler parameters t↵, as
computed from the topological formula, Eq. (2.8). For the norm, the default is n = 1. Conversely,
these slope values on the “line bundle basis”OX(e↵), ↵ = 1, . . . , h1,1(X), fix the Kähler parameters
uniquely and this is the basic idea behind Eq. (4.7): by enforcing the correct slopes we enforce
the correct Kähler class.

The slope integral in Eq. (4.7) is evaluated numerically using MC integration, that is, integrals of
the form (2.10) are computed using Eq. (2.26). Note that this integral requires a large batch size to
provide a good approximation to the slope, while the other losses benefit from gradient descent with
small mini-batches. Hence, we break each training epoch of the NN into two optimization steps
with two di↵erent batch sizes (we do use the same optimizer, to transfer some of the information,
like momentum, between the two batches). A small batch size (default is 64 points) is used for
all above contributions to the loss function while a large one (defaults to 10, 000 points or the
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Ricci loss: 

than the ones in gCY, a NN dealing with a metric correction involves smaller numbers, likely leading
to enhanced numerical stability. As Table 1 shows, gpr may be defined additively, gpr = gFS + gNN, via
element-wise multiplication, gpr = gFS + gFS � gNN, or via matrix multiplication, gpr = gFS + gFS · gNN.
Finally, using the full information contained in Eq. (2.2), we may set gpr = gFS + @@̄�, where the NN
represents the real function �.

While we have already argued that the free NN is likely ine�cient, there is no telling which of the other
four Ansätze in Table 1 will be most e�cient in learning the Ricci-flat metric on a given CY manifold. For
example, while the �-model automatically gives a Kähler metric, it requires two additional derivatives
on the input, which come at a computational cost. For this reason, the cymetric package makes all
these options available for the user to explore. In the ensuing section, we will compare the performance
of the di↵erent NNs on the quintic.

In each experiment the NN is trained on input data which consists of a set {pi} of points on the CY
manifold. These points are generated using the method described in section 2.7. They are, by the
theorem of Shi↵man and Zelditch, distributed with respect to a measure dA, which is inherited from
the ambient space. This allows to compute any integrals used in the training and validation processes
as weighted sums, following Eqs. (2.25) and (2.26).

As discussed above, the learning of NNs is governed by the minimization of loss functions. A CY metric
must satisfy a number of mathematical constraints, listed in section 2. We encode these restrictions in
a custom loss function

L = ↵1LMA + ↵2LdJ + ↵3Ltransition + ↵4LRicci + ↵5LKclass (4.2)

where ↵i are hyperparameters of the NN with default value ↵i = 1.0, and the individual loss contribu-
tions are defined as follows:

• Monge-Ampère loss LMA

The Monge-Ampère loss is defined as
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and it ensures that the metric satisfies the Monge-Ampère equation (2.2), as required by the
Calabi–Yau theorem. This loss may be computed with any Ln norm, as indicated by the subscript
n (default is n = 1).5

• Ricci loss LRicci

The Ricci loss is defined by

LRicci = ||R||n =
����@@̄ ln det gpr
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, (4.4)

and it ensures that the metric has vanishing Ricci scalar.6 This is a necessary condition for the
metric to satisfy the stronger CY requirement of having vanishing Ricci tensor. Again, this loss
function may be computed with di↵erent Ln norms, with default n = 1.

5
The choice of Ln norm will a↵ect the training of the network. A high n pushes the network to reduce outliers, that is,

large loss function contributions that are localized at a few points. With a low n, the NN will instead strive to reduce the

loss function of all points with equal weight. From our experiments, the default values chosen in cymetric lead to good

performance on the manifolds we have studied.

6
Recall that for Kähler metrics, the Ricci scalar simplifies to R = gij̄@i@̄j̄ log det(g).
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Kahler class loss: 

• Kähler loss LdJ

The Kähler loss, defined by

LdJ =
X

ijk

||Re cijk||n + ||Im cijk||n , (4.5)

where cijk = gij̄,k � gkj̄,i and gij̄,k = @kgij̄ ensures that dJ = 0, so that the metric is Kähler. The
default for the Ln norm is n = 2.

• Transition loss Ltransition

The transition loss function ensures that gij̄ transforms as a complex tensor under coordinate
transformations. For the additive and multiplicative networks, this is implemented as

Ltransition =
1

d

X

U ,V

���
���gVpr � TUV · g

U
pr · (TUV)

†
���
���
n

, (4.6)

where (TUV)⌫µ = @v
⌫
/@u

µ are the transition matrices between patches U and V, with local coor-
dinates u and v, respectively. Moreover, d is the number of patch transitions, and the default for
the norm is n = 1.

• Kähler class loss LKclass

Finally, since we would like to compute the Ricci-flat metric for given Kähler parameters t↵, we
require a loss contribution which enforces the correct Kähler class7. It may appear this is not
necessary for the �-model — provided gFS is set up with the correct Kähler class, the addition
@@̄� is exact and, hence, does not change the class. While this is true mathematically, it depends
on � being a function (rather than a section), a condition which is di�cult to enforce on a NN.
For the other models in Table 1 there is no mathematical reason for the Kähler class to remain
unchanged. In order to fix the Kähler class we define the Kähler class loss function as

LKclass =
1

h1,1(X)

h
1,1(X)X

↵=1

����

����µt(OX(e↵))�

Z

X

J
2
pr ^ FFS,↵

����

����
n

. (4.7)

Here, OX(e↵) are the line bundles specified by integers (e↵)� = �
�
↵, FFS,↵ = �iJ↵/(2⇡) are

their associated field strengths and µt(OX(e↵) their slopes for the given Kähler parameters t↵, as
computed from the topological formula, Eq. (2.8). For the norm, the default is n = 1. Conversely,
these slope values on the “line bundle basis”OX(e↵), ↵ = 1, . . . , h1,1(X), fix the Kähler parameters
uniquely and this is the basic idea behind Eq. (4.7): by enforcing the correct slopes we enforce
the correct Kähler class.

The slope integral in Eq. (4.7) is evaluated numerically using MC integration, that is, integrals of
the form (2.10) are computed using Eq. (2.26). Note that this integral requires a large batch size to
provide a good approximation to the slope, while the other losses benefit from gradient descent with
small mini-batches. Hence, we break each training epoch of the NN into two optimization steps
with two di↵erent batch sizes (we do use the same optimizer, to transfer some of the information,
like momentum, between the two batches). A small batch size (default is 64 points) is used for
all above contributions to the loss function while a large one (defaults to 10, 000 points or the

7
This is not essential for manifolds with h1,1

(X) = 1 (such as the quintic), since all Kähler classes are obtained by

simple metric rescaling. However, it is critical in order to generate metrics with a well-defined Kähler class for h1,1
(X) > 1.
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fixes Kahler class by matching to the

known slopes of line bundles

mini-batches

large batches

Error measures

entire data set, whichever is smaller) is used for the Kähler class loss. We have observed that also
keeping the sigma loss in the updates with the large batch size further improves stability of the
code.

For all these loss functions, the derivatives with respect to the input coordinates are computed with
TensorFlow’s automatic di↵erentiation, which works reliable for all NNs.

A few comments are in order. By virtue of the Calabi-Yau theorem, the Monge-Ampère loss LMA is
su�cient to enforce Ricci-flatness of the metric. The Ricci-loss LRicci has been included as a potential
additional check but, since its computation is costly (as it involves taking two further derivatives), it is
disabled by default. Moreover, for the �-model which is Kähler by construction, the Kähler loss LdJ is
disabled. Similarly, the transition loss is disabled for this network (this is guaranteed as long as � is a
function). Disabling these losses for the �-model shortens training time and has had no ill e↵ects on
performance.

After the NN is trained, we require an error measure that tells us how well the NN approximates
the quantity we are learning, and how well it compares with other approximation schemes. For our
purposes, we consider error measures derived from the Monge-Ampère equation and the requirement of
Ricci-flatness. There are two established benchmark measures in the literature [15, 20], the sigma and
Ricci measures, (�,R). The � measure is obtained by integrating, using the MC approximation as a
weighted sum, the Monge-Ampère equation

� =
1

VolCY

Z

X

����1� 
⌦ ^ ⌦

(Jpr)n

���� , (4.8)

and the Ricci measure results from integrating the Ricci scalar

R =
1

VolCY

Z

X

|Rpr| . (4.9)

It should be noted that a small Ricci measure is necessary, but not su�cient, to guarantee that the
entire Ricci tensor is small. One could explore other (integrated) curvature measures, formed from
other contractions of the Ricci tensor, which, however, we have not done in this work. We also provide
measures to monitor the quality of the Kähler, transition, and volume approximations.

5 Results

In this section, we report the results from experiments where CY metrics are learned on CICY and
KS manifolds. These runs illustrate that the ML routines that we have developed perform well on CY
manifolds from these lists. As we will see, there is some variance in the performance of the di↵erent
NNs. The � network emerges as the most e�cient learner, and the small values reported on the �

and R error measures corroborate the accuracy of the obtained metrics. We furthermore find that the
point-generating routines are e�cient with run-times ranging from seconds (for the quintic) to an hour
(for the KS CY example) on a CPU of a standard laptop. We expect this e�ciency will persist on
CYs of similar complexity. For ease of notation, we will henceforth refer to the approximate CY metric
obtained at the end of training as gCY.
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Figure 1: Fermat Quintic experiments: a) Monge-Ampère loss on training data; b)+c)+d) Monge-
Ampère, transition and Kähler loss on validation data; e) �-measure f) volume and g) R-measure on
test data; h) the linear relationship between improvement in �-measure and R-measure. The plots
show the averaged performance of five separate experiments for each model, including 95% confidence
intervals as light-hue bands around each curve.

fails to close. On the other hand, for the additive network, while the addition to the metric will
generically break the Kähler constraint, the smallness of the addition implies that this breaking will be
small. One should expect the result to reflect this, and it is reassuring that it does.

On the second row of Figure 1 it is checked that the volume of the manifold is not changed during
learning. We also compute the � and R error measures. These checks are performed on a separate test
set of 22, 000 points. The � andRmeasures are benchmarks for the quality of CY metric approximations,
and their low values testify to the performance of the NNs. The �-models with lowest validation loss
reach, within an hour on a single CPU of a standard laptop, a mean accuracy of � = 0.0086 and
R = 0.076 and thus matches k = 20 in Donaldson algorithm [20] with a training time of 35 years on
4.6 ·108 points [30]. On the other hand, the energy functional methods obtain a similar accuracy already
at k = 4 [22] and other machine learning methods report similar runtimes as ours.9

To the best of our knowledge, we are the first to systematically study R, and to demonstrate, in subplot
h), a linear relation, � ⇡ 0.06R for the �-model, between optimization of the surrogate Monge-Ampère
equation (2.2) and decrease in Ricci measure R. While this is to be expected from the CY theorem, a
numerical routine could in principle deviate from this result. It is reassuring that our implementation
does not and that there is no tension between these two constraints.

9
We recall that reducing runtime for ML experiments is not the primary goal of the cymetric package; rather the benefit

of the new package is that it can be applied to a wider range of CY manifolds than previously possible and that it computes

the Ricci-flat metric for a given Kähler class.
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•  Efficiency comparable to other NN realisations

•    - model most successful �
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bi-cubic

case 1 2 3 4 5 6 7

t(i)

✓
1.414
1.414

◆ ✓
0.687
1.878

◆ ✓
0.421
1.955

◆ ✓
0.299
1.977

◆ ✓
0.962
1.753

◆ ✓
1.092
1.676

◆ ✓
0.853
1.809

◆

OX(k(i)) OX(1,�1) OX(1,�2) OX(1,�3) OX(1,�4) OX(2,�3) OX(3,�4) OX(3,�5)

Table 2: Choices t(i), where i = 1, . . . , 7, of the Kähler parameters for the bi-cubic and corresponding
slope zero line bundles with line bundle integers k(i).

Another conclusion from these experiments is that the �-model performs better than the other models,
at least for simple CY three-folds.10 While this is a result that should be treated with some caution, we
have reached similar conclusions on other manifolds, and will thus focus on this model in the following
sections.

5.2 Bi-cubic

In this sub-section we describe our numerical results for the bi-cubic CY, a manifold with Picard number
two. Specifically, we calculate the numerical Ricci-flat CY metrics at various specific points in the bi-
cubic Kähler moduli space. For these metrics we perform two basic checks to confirm that the correct
point in Kähler moduli space has indeed been reached: a numerical calculation of the CY volume and a
numerical calculation of various line bundle slopes, each of which can be compared with the exact result
obtained from a topological formula. As an example application, we also compute the HYM connection
for a specific line bundle on the bi-cubic numerically.

5.2.1 Basic set-up

The bi-cubic CY is defined as a hypersurface in the ambient space A = P2
⇥ P2 and it is contained

in both the CICY and the KS lists. Specifically, it is given as the zero locus in A of a bi-degree (3, 3)
polynomial. Its Hodge numbers are (h1,1(X), h2,1(X)) = (2, 83) and its non-zero intersection numbers
are d112 = d122 = 3. Throughout our calculations, we fix a specific point in complex structure moduli
space by focusing on the defining polynomial
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where (x0, x1, x2) and (y0, y1, y2) are homogeneous coordinates on the two P2 factors. We will calculate
the Ricci-flat metric for the seven points in Kähler moduli space indicated in Table 2. For each of these
choices of t there is a corresponding line bundle OX(k) with slope zero which is given in the last row of
Table 2.

10
This conclusion is also corroborated by experiments reported on in Ref. [51].
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where (x0, x1, x2) and (y0, y1, y2) are homogeneous coordinates on the two P2 factors. We will calculate
the Ricci-flat metric for the seven points in Kähler moduli space indicated in Table 2. For each of these
choices of t there is a corresponding line bundle OX(k) with slope zero which is given in the last row of
Table 2.
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This conclusion is also corroborated by experiments reported on in Ref. [51].
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case 1 2 3 4 5 6 7

t(i)

✓
1.414
1.414

◆ ✓
0.687
1.878

◆ ✓
0.421
1.955

◆ ✓
0.299
1.977

◆ ✓
0.962
1.753

◆ ✓
1.092
1.676

◆ ✓
0.853
1.809

◆

OX(k(i)) OX(1,�1) OX(1,�2) OX(1,�3) OX(1,�4) OX(2,�3) OX(3,�4) OX(3,�5)

Table 2: Choices t(i), where i = 1, . . . , 7, of the Kähler parameters for the bi-cubic and corresponding
slope zero line bundles with line bundle integers k(i).

Another conclusion from these experiments is that the �-model performs better than the other models,
at least for simple CY three-folds.10 While this is a result that should be treated with some caution, we
have reached similar conclusions on other manifolds, and will thus focus on this model in the following
sections.
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cubic Kähler moduli space. For these metrics we perform two basic checks to confirm that the correct
point in Kähler moduli space has indeed been reached: a numerical calculation of the CY volume and a
numerical calculation of various line bundle slopes, each of which can be compared with the exact result
obtained from a topological formula. As an example application, we also compute the HYM connection
for a specific line bundle on the bi-cubic numerically.
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The bi-cubic CY is defined as a hypersurface in the ambient space A = P2
⇥ P2 and it is contained

in both the CICY and the KS lists. Specifically, it is given as the zero locus in A of a bi-degree (3, 3)
polynomial. Its Hodge numbers are (h1,1(X), h2,1(X)) = (2, 83) and its non-zero intersection numbers
are d112 = d122 = 3. Throughout our calculations, we fix a specific point in complex structure moduli
space by focusing on the defining polynomial
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where (x0, x1, x2) and (y0, y1, y2) are homogeneous coordinates on the two P2 factors. We will calculate
the Ricci-flat metric for the seven points in Kähler moduli space indicated in Table 2. For each of these
choices of t there is a corresponding line bundle OX(k) with slope zero which is given in the last row of
Table 2.
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Figure 2: Bi-cubic training curves for the seven choices of Kähler parameters in Table 2. The last plot
represents the final loss, obtained by averaging over the last 10 epochs, as a function of t2/t1

(orange: LKclass, blue: 4⇥ LMA, both on training data, light-blue: 4⇥ � measure on validation data).

5.2.2 Point sampling and training with �-model

For each of the seven choices of Kähler parameters in Table 2, we have generated a training (validation)
set of 100, 000 (10, 000) points on the bi-cubic, using the Mathematica point generator of the cymetric
package. For the �-model and a neural network with width 64, depth 3, GELU activation functions and
initialization with N (0, 0.01), training has been carried out for 100 epochs, using the Adam optimizer
with a batch size of 64 and a learning rate of 1/1000. Training has been completed on a CPU of a
standard laptop in about three hours, for each of the seven choices of Kähler parameters.

The only two relevant contributions to the loss are the Monge-Ampère loss and the Kähler class loss
which are shown, together with the � error measure in Fig. 2. Evidently, training is e�cient and
successful for all seven cases. The last plot in Fig. 2 shows the final MA and Kclass loss, obtained by
averaging over the last 10 epochs, as a function of the modulus ratio t

2
/t

1, which can be seen as a
measure of the asymmetry of the manifold. There is a clear tendency for the final loss to increase with
increasing asymmetry, a behavior which is intuitively expected.
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Volume check

case 1 2 3 4 5 6 7

Vint 8.49 4.97 2.93 2.02 6.87 7.59 6.16
VFS 8.49 4.50 2.94 2.03 6.91 7.58 6.26
error < 1% < 1% < 1% < 1% < 1% < 1% ⇠ 2%
VCY 8.56 5.03 2.96 2.03 6.86 7.58 6.28
error < 1% ⇠ 1% < 1% < 1% < 1% < 1% ⇠ 2%

Table 3: Exact volume from intersection form (row 2), and volume from numerical integration with gFS

(row 3) and gCY (row 4), for the seven choices of Kähler parameters in Table 2.

5.2.3 Volume computations

From the runs described above we have obtained numerical results for the Ricci-flat CY metric gCY(pi) at
100, 000 points pi on the bi-cubic and for seven choices of Kähler parameters. In addition, the cymetric
package provides the weights wi, the auxiliary weights w̃i and the Fubini-Study metric gFS(pi) at those
points.

As a first check, we would like to compute the CY volume for all seven cases, based on Eq. (2.6). The
exact results are obtained from the intersection formula on the RHS of Eq. (2.6). Alternatively, these
volumes can be computed by integrating over the CY or the FS measure, as in the middle of Eq. (2.6),
and we will evaluate these integrals numerically, as explained in Section 2.7. Explicitly, we compute for
all seven cases

Vint =
1

6
d↵��t

↵
t
�
t
�
, VFS =

1

N

NX

i=1

w̃i det(gFS(pi)) , VCY =
1

N

NX

i=1

w̃i det(gCY(pi)) , (5.2)

where we recall that gCY refers to the network’s prediction for the CY metric after the training is
completed. The results are given in Table 3.

The volumes computed with the Fubini-Study metric are in good agreement with the exact results, with
most errors at the level of 1% or below. In this case, the only uncertainty comes from point sampling
(as the Fubini-Study metric is known exactly) so these results confirm that our method for sampling
points works and that 100, 000 points are su�cient.

The more important results in Table 3 are the volumes computed with the Ricci-flat CY metric, given
in the last row. Again, the accuracy is impressive at 1% or less for most cases. Overall, these results
confirm that the Ricci-flat CY metrics obtained are indeed in the prescribed Kähler class – only then
can the volume be expected to come out correctly. We emphasize that obtaining the correct volume has
not been built into the loss function. Rather, the correct Kähler class has been enforced during training
by imposing the Kähler class loss (4.7). Table 3 provides strong evidence that this method does indeed
work.

5.2.4 Slope computations

While the correct slope has been imposed during training it is still worth checking that our numerical
metrics can be used for accurate slope computations. For the seven values of Kähler parameters t(i)
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100, 000 points pi on the bi-cubic and for seven choices of Kähler parameters. In addition, the cymetric
package provides the weights wi, the auxiliary weights w̃i and the Fubini-Study metric gFS(pi) at those
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exact results are obtained from the intersection formula on the RHS of Eq. (2.6). Alternatively, these
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where we recall that gCY refers to the network’s prediction for the CY metric after the training is
completed. The results are given in Table 3.

The volumes computed with the Fubini-Study metric are in good agreement with the exact results, with
most errors at the level of 1% or below. In this case, the only uncertainty comes from point sampling
(as the Fubini-Study metric is known exactly) so these results confirm that our method for sampling
points works and that 100, 000 points are su�cient.

The more important results in Table 3 are the volumes computed with the Ricci-flat CY metric, given
in the last row. Again, the accuracy is impressive at 1% or less for most cases. Overall, these results
confirm that the Ricci-flat CY metrics obtained are indeed in the prescribed Kähler class – only then
can the volume be expected to come out correctly. We emphasize that obtaining the correct volume has
not been built into the loss function. Rather, the correct Kähler class has been enforced during training
by imposing the Kähler class loss (4.7). Table 3 provides strong evidence that this method does indeed
work.

5.2.4 Slope computations

While the correct slope has been imposed during training it is still worth checking that our numerical
metrics can be used for accurate slope computations. For the seven values of Kähler parameters t(i)
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•  accurate FS volume -> point sampling sufficient

•  accurate CY volume -> Ricci-flat metric accurate, correct Kahler class



slope check

and the seven line bundles OX(k(j)) in Table 2 we can compute a 7 ⇥ 7 slope matrix with entries
µt(i)

(OX(k(j))). The accurate entries of this matrix are obtained from the topological formula (2.8) and
are given by 2

666666664

0.00 �18.00 �36.00 �54.00 �18.00 �18.00 �36.00
9.16 0.00 �9.16 �18.33 9.16 18.33 9.16
10.94 5.47 0.00 �5.47 16.41 27.34 21.87
11.46 7.64 3.82 0.00 19.1 30.57 26.75
6.45 �6.45 �19.34 �32.24 0.00 6.45 �6.45
4.85 �9.7 �24.25 �38.8 �4.85 0.00 �14.55
7.63 �3.82 �15.26 �26.71 3.82 11.45 0.00

3

777777775

(5.3)

where the rows are labeled by the values of the Kähler parameters and the columns by the line bundles.
The zeros along the diagonal indicate the existence of HYM connections for these cases, that is, for the
line bundles OX(k(i)) and their associated Kähler parameters t(i).

Alternatively, we can work out the slope by carrying out the integrals in Eq. (2.10) numerically. Doing
this first for the FS metrics, that is, evaluating 2

N⇡

P
N

i=1 w̃i det(gFS(pi)) ⇢FS(pi) gives
2

666666664

0.11 �17.84 �35.78 �53.73 �17.73 �17.62 �35.57
9.12 �0.13 �9.37 �18.62 8.99 18.11 8.86
10.95 5.46 �0.03 �5.52 16.41 27.35 21.86
11.47 7.65 3.82 �0.01 19.12 30.6 26.77
6.27 �6.79 �19.84 �32.9 �0.52 5.75 �7.31
4.95 �9.53 �24.01 �38.49 �4.58 0.37 �14.11
7.34 �4.43 �16.19 �27.95 2.91 10.25 �1.51

3

777777775

(5.4)

Agreement with the exact results in (5.3) is impressive, with an average error of the non-zero slope of
⇠ 3%, suggesting that the point sample size is su�cient, at least for the purpose of computing slopes.
Using the Ricci-flat CY metrics and evaluating 2

N⇡

P
N

i=1 w̃i det(gCY(pi)) ⇢CY(pi), we find
2

666666664

0.03 �17.97 �35.98 �53.98 �17.95 �17.92 �35.92
8.86 �0.42 �9.70 �18.98 8.43 17.29 8.01
10.11 4.52 �1.07 �6.65 14.63 24.74 19.15
9.96 5.96 1.97 �2.02 15.92 25.87 21.88
6.38 �6.45 �19.29 �32.12 �0.07 6.31 �6.53
4.96 �9.41 �23.77 �38.13 �4.45 0.51 �13.86
7.53 �4.12 �15.76 �27.4 3.41 10.93 �0.71

3

777777775

(5.5)

Again, this is in good agreement with the exact results in (5.3), with an average error of the non-zero
slopes of ⇠ 7%, and it confirms that we have obtained Ricci-flat CY metrics with the correct, intended
Kähler class. We also note that, in most cases, the results are accurate enough to distinguish zero slope
cases (along the diagonal) which allow for a HYM connection from cases with non-zero slope. For highly
asymmetric manifolds, this distinction is less clear, which is related to the fact that training takes longer
in these cases.

5.2.5 HYM connection

As a final application of our results we would like to compute an approximation to the HYM connection
on a line bundle over the bi-cubic, following the procedure described in Section 3. To do this we focus on
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and the seven line bundles OX(k(j)) in Table 2 we can compute a 7 ⇥ 7 slope matrix with entries
µt(i)

(OX(k(j))). The accurate entries of this matrix are obtained from the topological formula (2.8) and
are given by 2
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6.45 �6.45 �19.34 �32.24 0.00 6.45 �6.45
4.85 �9.7 �24.25 �38.8 �4.85 0.00 �14.55
7.63 �3.82 �15.26 �26.71 3.82 11.45 0.00

3
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where the rows are labeled by the values of the Kähler parameters and the columns by the line bundles.
The zeros along the diagonal indicate the existence of HYM connections for these cases, that is, for the
line bundles OX(k(i)) and their associated Kähler parameters t(i).

Alternatively, we can work out the slope by carrying out the integrals in Eq. (2.10) numerically. Doing
this first for the FS metrics, that is, evaluating 2
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P
N

i=1 w̃i det(gFS(pi)) ⇢FS(pi) gives
2

666666664

0.11 �17.84 �35.78 �53.73 �17.73 �17.62 �35.57
9.12 �0.13 �9.37 �18.62 8.99 18.11 8.86
10.95 5.46 �0.03 �5.52 16.41 27.35 21.86
11.47 7.65 3.82 �0.01 19.12 30.6 26.77
6.27 �6.79 �19.84 �32.9 �0.52 5.75 �7.31
4.95 �9.53 �24.01 �38.49 �4.58 0.37 �14.11
7.34 �4.43 �16.19 �27.95 2.91 10.25 �1.51

3
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(5.4)

Agreement with the exact results in (5.3) is impressive, with an average error of the non-zero slope of
⇠ 3%, suggesting that the point sample size is su�cient, at least for the purpose of computing slopes.
Using the Ricci-flat CY metrics and evaluating 2
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i=1 w̃i det(gCY(pi)) ⇢CY(pi), we find
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0.03 �17.97 �35.98 �53.98 �17.95 �17.92 �35.92
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Again, this is in good agreement with the exact results in (5.3), with an average error of the non-zero
slopes of ⇠ 7%, and it confirms that we have obtained Ricci-flat CY metrics with the correct, intended
Kähler class. We also note that, in most cases, the results are accurate enough to distinguish zero slope
cases (along the diagonal) which allow for a HYM connection from cases with non-zero slope. For highly
asymmetric manifolds, this distinction is less clear, which is related to the fact that training takes longer
in these cases.
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where the rows are labeled by the values of the Kähler parameters and the columns by the line bundles.
The zeros along the diagonal indicate the existence of HYM connections for these cases, that is, for the
line bundles OX(k(i)) and their associated Kähler parameters t(i).
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Agreement with the exact results in (5.3) is impressive, with an average error of the non-zero slope of
⇠ 3%, suggesting that the point sample size is su�cient, at least for the purpose of computing slopes.
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Again, this is in good agreement with the exact results in (5.3), with an average error of the non-zero
slopes of ⇠ 7%, and it confirms that we have obtained Ricci-flat CY metrics with the correct, intended
Kähler class. We also note that, in most cases, the results are accurate enough to distinguish zero slope
cases (along the diagonal) which allow for a HYM connection from cases with non-zero slope. For highly
asymmetric manifolds, this distinction is less clear, which is related to the fact that training takes longer
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where the rows are labeled by the values of the Kähler parameters and the columns by the line bundles.
The zeros along the diagonal indicate the existence of HYM connections for these cases, that is, for the
line bundles OX(k(i)) and their associated Kähler parameters t(i).
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Agreement with the exact results in (5.3) is impressive, with an average error of the non-zero slope of
⇠ 3%, suggesting that the point sample size is su�cient, at least for the purpose of computing slopes.
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Again, this is in good agreement with the exact results in (5.3), with an average error of the non-zero
slopes of ⇠ 7%, and it confirms that we have obtained Ricci-flat CY metrics with the correct, intended
Kähler class. We also note that, in most cases, the results are accurate enough to distinguish zero slope
cases (along the diagonal) which allow for a HYM connection from cases with non-zero slope. For highly
asymmetric manifolds, this distinction is less clear, which is related to the fact that training takes longer
in these cases.
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on a line bundle over the bi-cubic, following the procedure described in Section 3. To do this we focus on
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Again, this is in good agreement with the exact results in (5.3), with an average error of the non-zero
slopes of ⇠ 7%, and it confirms that we have obtained Ricci-flat CY metrics with the correct, intended
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cases (along the diagonal) which allow for a HYM connection from cases with non-zero slope. For highly
asymmetric manifolds, this distinction is less clear, which is related to the fact that training takes longer
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where the rows are labeled by the values of the Kähler parameters and the columns by the line bundles.
The zeros along the diagonal indicate the existence of HYM connections for these cases, that is, for the
line bundles OX(k(i)) and their associated Kähler parameters t(i).
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Agreement with the exact results in (5.3) is impressive, with an average error of the non-zero slope of
⇠ 3%, suggesting that the point sample size is su�cient, at least for the purpose of computing slopes.
Using the Ricci-flat CY metrics and evaluating 2

N⇡

P
N

i=1 w̃i det(gCY(pi)) ⇢CY(pi), we find
2

666666664

0.03 �17.97 �35.98 �53.98 �17.95 �17.92 �35.92
8.86 �0.42 �9.70 �18.98 8.43 17.29 8.01
10.11 4.52 �1.07 �6.65 14.63 24.74 19.15
9.96 5.96 1.97 �2.02 15.92 25.87 21.88
6.38 �6.45 �19.29 �32.12 �0.07 6.31 �6.53
4.96 �9.41 �23.77 �38.13 �4.45 0.51 �13.86
7.53 �4.12 �15.76 �27.4 3.41 10.93 �0.71

3

777777775

(5.5)

Again, this is in good agreement with the exact results in (5.3), with an average error of the non-zero
slopes of ⇠ 7%, and it confirms that we have obtained Ricci-flat CY metrics with the correct, intended
Kähler class. We also note that, in most cases, the results are accurate enough to distinguish zero slope
cases (along the diagonal) which allow for a HYM connection from cases with non-zero slope. For highly
asymmetric manifolds, this distinction is less clear, which is related to the fact that training takes longer
in these cases.
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where the rows are labeled by the values of the Kähler parameters and the columns by the line bundles.
The zeros along the diagonal indicate the existence of HYM connections for these cases, that is, for the
line bundles OX(k(i)) and their associated Kähler parameters t(i).
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Again, this is in good agreement with the exact results in (5.3), with an average error of the non-zero
slopes of ⇠ 7%, and it confirms that we have obtained Ricci-flat CY metrics with the correct, intended
Kähler class. We also note that, in most cases, the results are accurate enough to distinguish zero slope
cases (along the diagonal) which allow for a HYM connection from cases with non-zero slope. For highly
asymmetric manifolds, this distinction is less clear, which is related to the fact that training takes longer
in these cases.
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Again, this is in good agreement with the exact results in (5.3), with an average error of the non-zero
slopes of ⇠ 7%, and it confirms that we have obtained Ricci-flat CY metrics with the correct, intended
Kähler class. We also note that, in most cases, the results are accurate enough to distinguish zero slope
cases (along the diagonal) which allow for a HYM connection from cases with non-zero slope. For highly
asymmetric manifolds, this distinction is less clear, which is related to the fact that training takes longer
in these cases.
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Again, this is in good agreement with the exact results in (5.3), with an average error of the non-zero
slopes of ⇠ 7%, and it confirms that we have obtained Ricci-flat CY metrics with the correct, intended
Kähler class. We also note that, in most cases, the results are accurate enough to distinguish zero slope
cases (along the diagonal) which allow for a HYM connection from cases with non-zero slope. For highly
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Again, this is in good agreement with the exact results in (5.3), with an average error of the non-zero
slopes of ⇠ 7%, and it confirms that we have obtained Ricci-flat CY metrics with the correct, intended
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cases (along the diagonal) which allow for a HYM connection from cases with non-zero slope. For highly
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Again, this is in good agreement with the exact results in (5.3), with an average error of the non-zero
slopes of ⇠ 7%, and it confirms that we have obtained Ricci-flat CY metrics with the correct, intended
Kähler class. We also note that, in most cases, the results are accurate enough to distinguish zero slope
cases (along the diagonal) which allow for a HYM connection from cases with non-zero slope. For highly
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Agreement with the exact results in (5.3) is impressive, with an average error of the non-zero slope of
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Again, this is in good agreement with the exact results in (5.3), with an average error of the non-zero
slopes of ⇠ 7%, and it confirms that we have obtained Ricci-flat CY metrics with the correct, intended
Kähler class. We also note that, in most cases, the results are accurate enough to distinguish zero slope
cases (along the diagonal) which allow for a HYM connection from cases with non-zero slope. For highly
asymmetric manifolds, this distinction is less clear, which is related to the fact that training takes longer
in these cases.
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where the rows are labeled by the values of the Kähler parameters and the columns by the line bundles.
The zeros along the diagonal indicate the existence of HYM connections for these cases, that is, for the
line bundles OX(k(i)) and their associated Kähler parameters t(i).
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Again, this is in good agreement with the exact results in (5.3), with an average error of the non-zero
slopes of ⇠ 7%, and it confirms that we have obtained Ricci-flat CY metrics with the correct, intended
Kähler class. We also note that, in most cases, the results are accurate enough to distinguish zero slope
cases (along the diagonal) which allow for a HYM connection from cases with non-zero slope. For highly
asymmetric manifolds, this distinction is less clear, which is related to the fact that training takes longer
in these cases.
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Agreement with the exact results in (5.3) is impressive, with an average error of the non-zero slope of
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Again, this is in good agreement with the exact results in (5.3), with an average error of the non-zero
slopes of ⇠ 7%, and it confirms that we have obtained Ricci-flat CY metrics with the correct, intended
Kähler class. We also note that, in most cases, the results are accurate enough to distinguish zero slope
cases (along the diagonal) which allow for a HYM connection from cases with non-zero slope. For highly
asymmetric manifolds, this distinction is less clear, which is related to the fact that training takes longer
in these cases.
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Kreuzer-Skarke CY

fan with vertices: 

the line bundle OX(1,�1) and Kähler parameters t1 = t2 ' 1.414, corresponding to case 1 in Table 2.
As the result in (5.3) (specifically, the (11) entry of this matrix) shows, the slope of OX(1,�1) vanishes
for this choice of Kähler parameters, so that a HYM connection does indeed exist.

Our method requires choosing a set of function (3.11) in which to expand the various quantities. We
do this using the sections �(OX(1, 1)), a nine-dimensional space with basis (xayb), where a, b = 0, 1, 2.
This leads to 81 functions of the form (3.11), explicitly given by

f(ab)(cd) =
xaybx̄cȳd

(|x0|2 + |x1|
2 + |x2|

2)(|y0|2 + |y1|
2 + |y2|

2)
. (5.6)

Note, these expressions are indeed of homogeneity degree zero in each set of P2 coordinates and, there-
fore, constitute functions on the ambient space and, by restriction, on the bi-cubic CY.

With these functions we compute the 81 ⇥ 81 matrix � which represents the Laplacian and the 81-
dimensional vector ⇢ which represents the inhomogeneity in Laplace’s equations, by evaluating the
matrix elements in Eq. (3.7) by numerical integration, using our point sample and numerical Ricci-
flat metric for case 1. We can check that the matrix � obtained in this way has a one-dimensional
kernel which corresponds to constant functions on the bi-cubic, as can be verified by taking the linear
combination of the functions (5.6) with a vector in the kernel. As expected, the source vector ⇢ is
not contained in the image Im(�), but we can verify that |⇢?

|/|⇢k
| ⇠ 0.03, so the component of ⇢

orthogonal to Im(�) is small. Then we solve Eq. (3.10) to find an 81-dimensional solution vector � and
the linear combination of the functions (5.6) formed with this vector provides gives our approximation
of the function �. Via Eq. (3.4), this function � then determines the approximation to the HYM
bundle metric. For this result we compute the quantity (3.12) as a measure of the accuracy of the
approximation. This comes out at ⇠ 3%, indicating a reasonably accurate HYM connection.

5.3 Toric hypersurface CY with Picard rank 2

To test the cymetric package’s ability to predict CY metrics on KS CY manifolds, we select a CY
manifold with Picard rank two from the KS list. After specifying the Kähler moduli as (t1, t2) = (1, 1)
and the complex structure moduli by a random assignment of the coe�cient of the defining polynomial,
we generate points on the manifold as specified in Section 2.7. These points are then used in training
the �-model to predict the CY metric.

5.3.1 Geometric set-up and point sampling

The selected manifold has a toric ambient space with two Kähler moduli. The vertices11
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span a fan in the lattice N which defines a P1-fibered toric ambient space over P3, A = P1
! P3,

of Picard rank two. Each vertex corresponds to a homogeneous coordinate x
i
⇠ vi, and a divisor

11
The reader unfamiliar with toric geometry may wish to consult Appendix A.

26

(h1,1(X), h2,1(X)) = (2, 80)
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the line bundle OX(1,�1) and Kähler parameters t1 = t2 ' 1.414, corresponding to case 1 in Table 2.
As the result in (5.3) (specifically, the (11) entry of this matrix) shows, the slope of OX(1,�1) vanishes
for this choice of Kähler parameters, so that a HYM connection does indeed exist.

Our method requires choosing a set of function (3.11) in which to expand the various quantities. We
do this using the sections �(OX(1, 1)), a nine-dimensional space with basis (xayb), where a, b = 0, 1, 2.
This leads to 81 functions of the form (3.11), explicitly given by
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Note, these expressions are indeed of homogeneity degree zero in each set of P2 coordinates and, there-
fore, constitute functions on the ambient space and, by restriction, on the bi-cubic CY.

With these functions we compute the 81 ⇥ 81 matrix � which represents the Laplacian and the 81-
dimensional vector ⇢ which represents the inhomogeneity in Laplace’s equations, by evaluating the
matrix elements in Eq. (3.7) by numerical integration, using our point sample and numerical Ricci-
flat metric for case 1. We can check that the matrix � obtained in this way has a one-dimensional
kernel which corresponds to constant functions on the bi-cubic, as can be verified by taking the linear
combination of the functions (5.6) with a vector in the kernel. As expected, the source vector ⇢ is
not contained in the image Im(�), but we can verify that |⇢?

|/|⇢k
| ⇠ 0.03, so the component of ⇢

orthogonal to Im(�) is small. Then we solve Eq. (3.10) to find an 81-dimensional solution vector � and
the linear combination of the functions (5.6) formed with this vector provides gives our approximation
of the function �. Via Eq. (3.4), this function � then determines the approximation to the HYM
bundle metric. For this result we compute the quantity (3.12) as a measure of the accuracy of the
approximation. This comes out at ⇠ 3%, indicating a reasonably accurate HYM connection.

5.3 Toric hypersurface CY with Picard rank 2

To test the cymetric package’s ability to predict CY metrics on KS CY manifolds, we select a CY
manifold with Picard rank two from the KS list. After specifying the Kähler moduli as (t1, t2) = (1, 1)
and the complex structure moduli by a random assignment of the coe�cient of the defining polynomial,
we generate points on the manifold as specified in Section 2.7. These points are then used in training
the �-model to predict the CY metric.

5.3.1 Geometric set-up and point sampling
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span a fan in the lattice N which defines a P1-fibered toric ambient space over P3, A = P1
! P3,

of Picard rank two. Each vertex corresponds to a homogeneous coordinate x
i
⇠ vi, and a divisor

11
The reader unfamiliar with toric geometry may wish to consult Appendix A.
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(3 hidden layer, width 256, GELU activation, 200000 points, SGD)
training:

Figure 3: KS CY experiments: a) Monge-Ampère and Kähler class loss on training data; b) volume
c) � measure and d) R measure on validation data. The plots show the averaged performance of five
separate experiments for the � model, including 95% confidence intervals as light-hue bands around
each curve.

loss while staying in the reference Kähler class, sometimes lead to the determinant of the predicted
metric turning negative in isolated points during training. To ameliorate the long term e↵ects of this
behavior, training was conducted with lower learning rate and a larger momentum compared to the
bicubic runs. The training took a couple of hours on a single GPU.

The results of the five experiments are shown in Figure 3. We observe that the Monge-Ampère loss,
LMA, decreases steadily over training, totaling to a factor 4 decrease over 100 epochs. While this is
certainly less impressive than the improvement on the quintic, learning clearly takes place. For the �

model, the transition and Kähler losses are automatically zero, and hence are disabled. The decrease
in the Kähler class loss, LKclass, is also a factor 4, and the volume stays approximately constant around
20, which is the true value. The � measure, which is calculated on validation data, also decreases
steadily over training, showing that the NN provides a better and better solution to the Monge-Ampère
equation. The most interesting part of this experiment is the evolution of the Ricci measure. During
the initial 20 epochs, this goes through sharp spikes, corresponding to occurrences of points where the
determinant of the predicted metric gpr = gFS + @@̄� becomes negative. This unphysical behavior is
not lasting, and the training converges to a Ricci measure of around 5. While this is clearly non-zero,
training decreases R by roughly 37%.

As for the bicubic, we can now compute the volume of the CY using the intersection numbers, FS and
CY metric. We find, for t1 = t2 = 1,

Vint = 20 , VFS = 19.98 , VCY = 19.89 , (5.13)

using Eq. (5.2) and the intersection numbers given in (5.11), and VCY refers to the network’s prediction
for the CY volume after the training is completed, and is here computed as the mean of the five runs.12

We find that the volumes agree within 1 %, a result that testifies to the accuracy of the point generating
routine and metric prediction.

12
For the five experiments, we find VCY = {19.92 , 19.73 , 20.34 , 19.49 , 19.96}, respectively.
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