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An analysis is presented of an Eg ® Eg superstring-inspired ten-dimensional supergravity model following from com-
pactification on a particular Calabi—Yau manifold which gives rise to three generations. The multiplet structure and dis-
crete symmetries after compactification are determined. It is shown that the model has flat directions which allow for
breaking of the gauge group to the standard SU(3) ® SU(2) ® U(1) model at a high scale. The resulting low-energy theory
has a realistic spectrum and, remarkably, the discrete symmetries predict a reasonable structure for the Kobayashi—
Maskawa mixing matrix. Without unnatural adjustments, proton decay is inhibited and neutrino masses consistent with
experimental limits are obtained.
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® Modular functions and fermion mass models in string theory.

® Scale invariance as an attempt to address the hierarchy problem.

o How f***ed up the UK is.

e Models of inflation.
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For CY compactifications the massless spectrum and holomorphic
low-energy quantities (superpotential) do not depend on Ricci-flat metric.

However, the massive spectrum and non-holomorphic quantities (matter
field Kahler metric, physical Yukawa couplings) do depend on Ricci-flat
meftric.

-> Computing fermion masses from string theory requires the Ricci-flat
CY metric.

-> Compute Ricci-flat CY metric numerically.
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this talk
Key points:

e Compute Ricci-flat metric for CICYs and KS CYs.
e Compute Ricci-flat metric at given point in moduli space.

e Realised in python/tensorflow library with Mathematica api:

https://github.com/pythoncymetric/cymetric
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CY manifolds
We consider CYs X C A in an ambient space A of two types:

X = complete intersection C A =P" x ... xP" (CICYs)

X = hypersurface C A = toric 4-fold (Kreuzer-Skarke CY)

J = Jpg = t*J, +«— by restriction from A

Kahler moduli
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distributed according to a measure dA based on Fubini-Study forms.
Shiffman, Zelditch, CMP 200 (1999) 66l.
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KS CYs: Have generalised above method to toric case by embedding
CY X into ®.PHY(J,).

Computing metric

Fully connection feed-forward NN which represents metric.
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Computational realisation

Point generator

Generates points on CY with known measure dA

Neural network

X220 —lz— oWz +b)f—>» - . - —»c— o(Wyx+0by)

— NN

Relation between neural network and metric

Name Ansatz
Free Jpr = gNN
Additive gpr = gFS T gNN
Multiplicative, element-wise | gpr = grs + grs © gNN
Multiplicative, matrix Jgpr = JFS + gFS * gNN
¢-model gpr = grs + 00¢
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L = CV1£MA + OZZEdJ + a3£transition + 044£Ricci + CVE)EKclass

transition loss:

1 det g
Monge-Ampere loss: Ly =||1 - ——%
J P VA kQAQ|,
Kahler loss: Lg5 = Z |Re Cijk“n + |[Im Cz’jszn Cijk = 95k — 9k},
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Error measures

!
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Figure 1: Fermat Quintic experiments: a) Monge-Ampere loss on training data; b)+c)+d) Monge-
Ampere, transition and Kahler loss on validation data; e) o-measure f) volume and g) R-measure on
test data; h) the linear relationship between improvement in o-measure and R-measure. The plots
show the averaged performance of five separate experiments for each model, including 95% confidence
intervals as light-hue bands around each curve.
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® ¢ - model most successful

Efficiency comparable to other NN realisations
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+ 0.87x122x0yoy1y2 + 0.4925ys 4+ 0.79x5ys + 0.96x7y; + 0.49x5y7 + 0.7923y5 + 0.9625y5
+ 0.54x5xoy0ys + 0.39z125y0y5 + 0.05xT2y115 + 0.87x1x%y8y1 + 0.8190%9623;(2)?;2 + 0.9921 5y Yo
+0.5123yoy1y2 + 0.5123y0y1y2 (5.1)

Choice of Kahler parameters: Jpg = t'J; + t°J;

case 1 2 3 4 5 6 7

, 1.414 0.687 0.421 0.299 0.962 1.092 0.853
(4) 1.414 1.878 1.955 1.977 1.753 1.676 1.809

Ox(k(i)) Ox(l,—l) OX(l,—Q) Ox(l,—3) Ox(l,—4) Ox(Q, —3) Ox(3,—4) Ox(3,—5)

Table 2: Choices ¢(;), where ¢ = 1,...,7, of the Kahler parameters for the bi-cubic and corresponding
slope zero line bundles with line bundle integers k ;).



Training
(3 hidden layer, width 64, GELU activation, 100000 points each, Adam optimiser)



Training
(3 hidden layer, width 64, GELU activation, 100000 points each, Adam optimiser)

loss
loss
loss
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loss
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Final loss versus asymmetry

loss
loss

Figure 2: Bi-cubic training curves for the seven choices of Kahler parameters in Table 2. The last plot
represents the final loss, obtained by averaging over the last 10 epochs, as a function of ¢2/t!
(orange: Lgclass, blue: 4 X Lyia, both on training data, light-blue: 4 X o measure on validation data).



Volume check

N N
1 1 1
S oyf __§:~. . __§:~. .
th — Gdaﬁfyt t°t7 ) VFS — N - Wy det(gFS(pz)> ) VCY — N - wj det(gCY(pz))

case 1 2 3 4 H 6 7

Vint 8.49 4.97 2.93 2.02 6.87 7.59 6.16
Vg 8.49 4.50 2.94 2.03 6.91 7.58 6.20
error || < 1% | <1% | <1% | <1% | <1% | < 1% | ~ 2%
Vv 8.50 5.03 2.96 2.03 6.80 7.58 6.28
error || < 1% | ~1% | <1% | <1% | <1% | < 1% | ~ 2%

Table 3: Exact volume from intersection form (row 2), and volume from numerical integration with gpg
(row 3) and gcy (row 4), for the seven choices of Kahler parameters in Table 2.

e accurate FS volume -> point sampling sufficient

e accurate CY volume -> Ricci-flat metric accurate, correct Kahler class



slope check

exact slope: pu(Ox(k)) = dap t*“t’k"

te (Ox (ki) =

0.00
9.16
10.94
11.46
6.45
4.85
7.63

—18.00
0.00
5.47
7.64

—6.45
—9.7
—3.82

—36.00
—9.16
0.00
3.82
—19.34
—24.25
—15.26

—54.00
—18.33
—5.47
0.00
—32.24
—38.8
—26.71

—18.00
9.16
16.41
19.1
0.00
—4.85
3.82

—18.00
18.33
27.34
30.57

6.45
0.00
11.45

—36.00 ]
9.16
21.87
26.75
—6.45
—14.55
0.00 _




slope check

exact slope: pu(Ox(k)) = dap t*“t’k"

0.00
9.16
10.94
11.46
6.45
4.85
| 7.63

pen, (Ox (k) =

FS slope: u(Ox(k)) = & SN,

0.11
9.12
10.95
11.47
6.27
4.95
7.34

i (Ox (kepy)) =

_18.00 —36.00 —54.00 —18.00
0.00 —-9.16 —18.33  9.16
547 000 —547  16.41
764 382 000  19.1
645 —19.34 —3224  0.00
97 —924.95 —388 —4.85
382 —1526 —26.71  3.82
i det(grs(pi)) prs(pi)

_17.84 —3578 —53.73 —17.73
013  —937 —18.62  8.99
546  —0.03 —552  16.41
765  3.82 —001 19.12
679 —19.84  —32.9 —0.52
053 —24.01 —3849 —4.58
443 —16.19 -27.95 291

—18.00
18.33
27.34
30.57

6.45
0.00
11.45

—17.62
18.11
27.35

30.6
5.75
0.37
10.25

—36.00 ]
9.16
21.87
26.75
—6.45
—14.55
0.00 |

—35.57
8.86
21.86
26.77
—7.31
~14.11
~1.51 |




slope check

exact slope: u(Ox(k)) = dap t*t’k"

pen, (Ox (k) =

FS slope: u(Ox(k))

i (Ox (kepy)) =

CY slope: p(Ox(k))

pe (Ox (ki) =

— Nr

0.00 —18.00 —36.00 —>54.00 —18.00 —18.00
9.16 0.00 —9.16 —18.33 9.16 18.33
10.94 5.47 0.00 —5.47 16.41 27.34
11.46 7.64 3.82 0.00 19.1 30.57
06.45 —6.45 —19.34 —-32.24 0.00 6.45
4.85 —9.7 —=24.25 —38.8 —4.85 0.00

| 7.63 —3.82 —15.26 —26.71 3.82 11.45

2 SV g det(grs(pi)) prs (ps)

- 0.11 —17.84 —-35.78 —-53.73 —17.73 —17.62
9.12 —0.13 —9.37 —18.62 &8.99 18.11
10.95 5.46 —0.03 —5.52 16.41 27.35
11.47 7.65 3.82 —0.01 19.12 30.6
0.27 —6.79 —19.84 —-32.9 —0.52 5.75
4.95 —9.53 —24.01 -—-38.49 —4.58 0.37
7.34 —4.43 —16.19 —-27.95 2.91 10.25

2 N~ . .
= 5= D _ieq Widet(gov(pi)) poy (ps)

- 0.03 —17.97 —3598 —53.98 —17.95 —17.92
8.86 —0.42 —9.70 —18.98 8.43 17.29
10.11 4.52 —1.07 —06.65 14.63 24.74
9.96 5.96 1.97 —2.02 15.92 25.87
6.38 —6.45 —19.29 —-32.12 —0.07 6.31
4.96 —9.41 —-23.77 —-38.13 —4.45 0.51

| 7.53 —4.12 —15.76 —27.4 3.41 10.93

—36.00 ]

—14.55

—35.92 ]

—13.86

9.16
21.87
26.75

—6.45

0.00 |

—35.57 ]

8.86
21.86
26.77

—7.31

—14.11

~1.51 |

8.01
19.15
21.88

—6.53

—0.71 |



slope check

exact slope: pu(Ox(k)) = dap t*“t’k"

te (Ox (ki) =

FS slope: u(Ox(k))

i (Ox (kepy)) =

CY slope: u(Ox(k))

e (Ox (ki) =

— Nr

-> Further check of point sampling and

0.00 —18.00 —36.00 —54.00 —18.00
9.16 0.00 —-9.16 —-18.33 9.16
10.94 5.47 0.00 —5.47 16.41
1146 764 382 000  19.1
6.45 —6.45 —19.34 —-32.24 0.00
4.85 —9.7 —24.25 —38.8 —4.85

| 763 —3.82 —15.26 —26.71 3.82
2NV by det(grs (pi) prs (pi)
- 0.11 —-17.84 -—-35.78% —-53.73 —-17.73
9.12 —-0.13 —9.37 —18.62 8.99
10.95 546 —0.03 —5.52 16.41
11.47 7.65 3.82 —0.01 19.12
6.27 —-6.79 —-19.84 —-32.9 —0.52
495 —9.53 —24.01 —-38.49 —4.58

| 7.34  —4.43 —-16.19 —-27.95 2.91
= Nz 2ui=1 Widet\gcy\Pi)) PCY \Pi
250 g det(gey (i) poy (i)
C 0.03 —17.97 —-35.98 —-53.98 —-17.95
886 —0.42 —-9.70 —18.98 8.43
10.11 4.52 —1.07 —6.65 14.63
9.96 5.96 1.97 —2.02 15.92
6.38 —6.45 —-19.29 -32.12 —-0.07
496 —9.41 -23.77 —-38.13 —4.45
| 7.53 —4.12 -—-15.76 274 3.41

—18.00
18.33
27.34
30.57

6.45
0.00
11.45

—17.62
18.11
27.35

30.6
5.75
0.37
10.25

—17.92
17.29
24.74
25.87

6.31
0.51
10.93

—36.00
9.16
21.87
26.75
—6.45
—14.55
0.00

—35.97
8.86
21.86
26.77
—7.31
—14.11
—1.51

—395.92
8.01
19.15
21.88
—6.53
—13.86
—0.71

correct Kahler class

Application: Compute HYM connection on line bundles
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Kreuzer-Skarke CY

—1 0 0 0
. . —1 0 0 1
fan with vertices: w= ( 1 ) , U= (0) , U= (1> , U3 = (0) , Vg = (
0 1 0 0 —

(RH(X), h* (X)) = (2,80)

training:
(3 hidden layer, width 256, GELU activation, 200000 points, SGD)




Kreuzer-Skarke CY

—1 0 0 0 2 1
. . —1 0 0 1 0 0
Fan with vertices: w= 1l =gl =] =g = o | =1,
0 1 0 0 —1 0
(hMH(X), h*H (X)) = (2,80)
training:
(3 hidden layer, width 256, GELU activation, 200000 points, SGD)
o a) Loss functions » b) Volume C) 0 measure . d) Ricci measure
04 . A
NO?, . .
’ ’ 4eopochg0 : v 0 ’ 2poch§0 : v 0 ; 4e0poch:) : - ’ ’ 4gpochiO : v

Figure 3: KS CY experiments: a) Monge-Ampere and Kahler class loss on training data; b) volume
c) o measure and d) R measure on validation data. The plots show the averaged performance of five
separate experiments for the ¢ model, including 95% confidence intervals as light-hue bands around
each curve.



Conclusion

¢ We have developed methods to compute Ricci-flat metric for CICYs and
KS CYs at given points in moduli space.

® These methods have been realised in package cymetric.

e Experiments for bi-cubic confirm that point sampling and Kahler class
fixing works.

e Same confirmed by experiments for KS CY.
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